

Ziegelei 1 D-72336 Balingen E-Mail: info@kern-sohn.com Tel: +49-[0]7433- 9933-0 Fax: +49-[0]7433-9933-149 Internet: www.kern-sohn.com

# Reference manual **KERN Communications Protocol** (KCP)

## **KERN KCP**

KCP versions: 1.1.2

Manual version 1.3.8 (2019-04)

**GB** 



## **KERN KCP**

# Reference manual KERN Communications Protocol (KCP)

| Tak | ole of contents                                         |      |
|-----|---------------------------------------------------------|------|
| 1   | BRIEF OUTLINE                                           | 1    |
| •   |                                                         |      |
| 1.1 | Default interface communication parameters              | 4    |
| 1.2 | Basic command and response format                       | 4    |
| 1.3 | Language conventions                                    | 4    |
| 1.4 | Overview of basic commands                              | 5    |
| 2   | GENERAL                                                 |      |
|     |                                                         |      |
| 2.1 | KCP Version                                             | 6    |
| 2.2 | KCP Command Levels                                      | 6    |
| 2.3 | Conventions in this manual                              | 6    |
| 2.4 | Default communication parameters                        | 6    |
| 2.  | 4.1 RS-232 / RS-485                                     |      |
| 2.5 | Protocol structure                                      | 7    |
| _   | 5.1 Encoding                                            |      |
|     | 5.2 Case sensitiveness                                  |      |
|     | 5.3 Commands                                            |      |
|     | 5.4 Responses                                           |      |
|     | •                                                       |      |
| 2.6 | Command queue and timing                                |      |
|     | 6.1 Command queue / sequence                            |      |
| ۷.  |                                                         |      |
| 2.7 | Units                                                   | 8    |
| 2.8 | Message codes / Error codes                             | 8    |
| 3   | KCP COMMANDS – CATEGORY "DEVICE" (LEVEL 0)              |      |
| 4   | KCP COMMANDS - CATEGORY "DEVICE DISPLAY" (LEVEL 1)      | 19   |
| 5   | KCP COMMANDS - CATEGORY "WEIGHING BASIC" (LEVEL 0)      | 27   |
| 6   | KCP COMMANDS - CATEGORY "WEIGHING ADVANCED" (LEVEL 1)   |      |
| 7   | KCP COMMANDS - CATEGORY "WEIGHING ADJUSTMENT" (LEVEL 2) |      |
| 8   | KCP COMMANDS - CATEGORY "WEIGHING SERVICE"              | 63   |
| 9   | KCP COMMANDS - CATEGORY "SENSORS" (LEVEL 2)             | 74   |
| 10  | KCP COMMANDS - CATEGORY "EXTERNAL TERMINAL" (ETL)       | . 79 |
| 11  | KCP COMMANDS - CATEGORY "AXIS MOVEMENT"                 | . 81 |
| 12  | KCP COMMANDS – CATEGORY "DIGITAL PLATFORM"              | . 90 |
| 13  | KCP COMMANDS - CATEGORY "NETWORK"                       | 91   |

| 14 | KCP COMMANDS – LEVEL 2 (MODEL-SPECIFIC FEATURES) | 97  |
|----|--------------------------------------------------|-----|
| 15 | KCP COMMANDS - CATEGORY "SERVICE"                | 102 |
| 16 | KCP COMMAND INDEX                                | 103 |

#### 1 Brief outline

The KERN Communications Protocol (KCP) is a standardized interface command set for KERN balances and other instruments, which allows retrieving and controlling all relevant functions and functions of the device. KERN instruments featuring KCP are thus easily integrated with computers, industrial controllers and other digital systems.

This section gives an overview over the general command and response structure and lists the few basic commands required to handle the vast majority of applications.

#### 1.1 Default interface communication parameters

By default, each KCP device comes preset to the following communication parameters. The applicable parameters depend on the type of communication interface:

| Interfaces                      | Parameters |             |            |        |
|---------------------------------|------------|-------------|------------|--------|
| RS-232 / RS-485 / Bluetooth SPP | Baud rate: | 9600 baud/s | Data bits: | 8 bits |
|                                 | Parity:    | none        | Stop bits: | 1 bit  |

#### 1.2 Basic command and response format

KCP is based on simple ASCII-encoded text commands and responses. Every interaction consists of a command, possibly with arguments separated by spaces (symbol  $\underline{\ }$ ) and terminated by Windowsstyle newline characters (<CR><LF>):

| Command     |               | Arguments |               |  |               |  |           |           |  |
|-------------|---------------|-----------|---------------|--|---------------|--|-----------|-----------|--|
| <cmd></cmd> | <arg1></arg1> | _         | <arg2></arg2> |  | <arg3></arg3> |  | <cr></cr> | <lf></lf> |  |

Correctly formatted commands are answered with a response containing the requested data including or following a confirmation of the following form:

| Response    |   | Status                                                                                          |           | Data                | Termi     | inator    |
|-------------|---|-------------------------------------------------------------------------------------------------|-----------|---------------------|-----------|-----------|
| <cmd></cmd> | ı | A = accepted / acknowledge L = logical error / invalid parameter I = internal / technical error | ı         | command<br>specific | <cr></cr> | <lf></lf> |
| ES          |   | Erroneous syntax or unknown comma                                                               | <cr></cr> | <lf></lf>           |           |           |

**Example:** Command "Set indication unit to grams (g)" with response "accepted"

| Command: | U  | u  | g   | <cr></cr> | < <i>LF</i> > | _        | Response: | U  |    | Α  | <cr></cr> | <lf></lf> |
|----------|----|----|-----|-----------|---------------|----------|-----------|----|----|----|-----------|-----------|
| dec:     | 85 | 32 | 103 | 13        | 10            | <b>→</b> | dec:      | 85 | 32 | 65 | 13        | 10        |
| hex:     | 55 | 20 | 67  | 0D        | 0A            |          | hex:      | 55 | 20 | 41 | 0D        | 0A        |

**Example:** Command "Set indication unit to invalid unit" with response "logical error"

| Command: | כ  | u  | Χ  | <cr></cr> | < <i>LF</i> > | _        | Response: | U  | u  | L  | <cr></cr> | < <i>LF</i> > |
|----------|----|----|----|-----------|---------------|----------|-----------|----|----|----|-----------|---------------|
| dec:     | 85 | 32 | 88 | 13        | 10            | <b>→</b> | dec:      | 85 | 32 | 76 | 13        | 10            |
| hex:     | 55 | 20 | 58 | 0D        | 0A            |          | hex:      | 55 | 20 | 4C | 0D        | 0A            |

Example: Invalid command

| Command: | U  | u  | g   | <cr></cr> | < <i>LF</i> > | _        | Response: | ES    | <cr></cr> | < <i>LF</i> > |
|----------|----|----|-----|-----------|---------------|----------|-----------|-------|-----------|---------------|
| dec:     | 85 | 32 | 103 | 13        | 10            | <b>→</b> | dec:      | 69 83 | 13        | 10            |
| hex:     | 55 | 20 | 67  | 0D        | 0A            |          | hex:      | 45 53 | 0D        | 0A            |

#### 1.3 Language conventions

Throughout this manual, the following conventions are used for command and response syntax:

| _        | Space symbol (dec 32, hex 20)                      |
|----------|----------------------------------------------------|
| Ψ        | Commands sent to the balance / measurement device. |
| <b>^</b> | Responses of the balance / measurement device      |

## 1.4 Overview of basic commands

|          | in the host unit (by defa                   | Request stable indication (weighing or measured value) in the host unit (by default the current indication unit). Waits until indication fulfills the "stable" condition or until configured timeout is reached.                                                                                                                     |  |  |  |  |  |  |  |
|----------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| <b>→</b> | S                                           |                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| <b>↑</b> | S_S100.00_g<br>S_S100.00_g<br>S_S1152.05_kg | Indication value is right aligned, 10 characters.  Decimal sign is a point. The minus sign immediately precedes the numerical value – without leading zero.  On multi-range devices, hidden trailing decimals are shown as spaces.  Status "S" = current indication is stable  Status "D" = current indication is unstable / dynamic |  |  |  |  |  |  |  |
|          | S_I                                         | In menu, currently executing another command or timeout reached.                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|          | S_+ <i>or</i> S                             | Overload or underload                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |

|   | Request immediate indication in the host unit (by default the current indication unit) Immediately sends the current indication without waiting for stable conditions. |                                                                  |  |  |  |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|
| ¥ | SI                                                                                                                                                                     |                                                                  |  |  |  |  |  |  |
| 1 | SI_S100.00_g                                                                                                                                                           | see description of command "C"                                   |  |  |  |  |  |  |
|   | SI_D99.98_g                                                                                                                                                            | see description of command "S"                                   |  |  |  |  |  |  |
|   | SI_I                                                                                                                                                                   | In menu, currently executing another command or timeout reached. |  |  |  |  |  |  |
|   | SI_+ or S                                                                                                                                                              | Overload or underload                                            |  |  |  |  |  |  |

|   | Zero indication | Tare indication |                                                                  |
|---|-----------------|-----------------|------------------------------------------------------------------|
| T | Z               | Т               |                                                                  |
| 1 | Z_A             | T_S_11.123_kg   | Zeroing/taring successful.                                       |
|   | Z_I             | T_I             | In menu, currently executing another command or timeout reached. |
|   | Z_+ or Z        | T_+ or T        | Overload or underload; or zero range exceeded                    |

|          | Query or set disp  | play and host unit                    |                                               |
|----------|--------------------|---------------------------------------|-----------------------------------------------|
| Ŧ        | U                  | Query current display unit            |                                               |
| 1        | U_A_ <unit></unit> | Current display unit is <unit></unit> |                                               |
| •        | U_ <unit></unit>   | Set current display and host unit.    | Units: g, kg, mg, lb, pcs,%, N, kN, TF, KLBF, |
| <b>↑</b> | U_A                | Unit successfully set                 |                                               |
|          | U. I               | Invalid unit.                         |                                               |

|          | Set mode of indication (Peak or track mode) |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|----------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 4        | SIM                                         | Query current mode of indication                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| <b>↑</b> | SIM_A_ <mode></mode>                        | Current mode of indication is <mode></mode>                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| <b>→</b> | SIM_ <mode></mode>                          | Set current mode of indication and reset the current peak value. <mode> is one of the following:  • T = Track mode (indicate the current measurand)  • P = Peak mode (only indicate the largest value +/-)  • P+ = Peak positive mode (only indicate the largest pos. value)  • P- = Peak negative mode (only indicate the largest neg. value)</mode> |  |  |  |  |  |  |
| <b>↑</b> | SIM_A                                       | Mode successfully set, current peak value is zero.                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|          | SIM_I                                       | Invalid < mode>                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |

|          | Read measurement memory / reports Sends all available recorded data in a unspecified tabular form (separated by spaces) |                                                                 |  |  |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|--|--|
| 4        | SMEM                                                                                                                    |                                                                 |  |  |  |  |  |  |  |
| <b>↑</b> | SMEM_A_START                                                                                                            | Command understood, next lines will be the data in tabular form |  |  |  |  |  |  |  |
|          | <header line=""></header>                                                                                               | Number Date Time Mode Indication                                |  |  |  |  |  |  |  |
|          | <data 1="" line=""></data>                                                                                              | 1 2016-01-13 12:34:56 T 12.3456 N                               |  |  |  |  |  |  |  |
|          | <data 2="" line=""></data>                                                                                              | 2 2016-02-22 12:37:15 P+ 12.3456 kN                             |  |  |  |  |  |  |  |
|          | <data 3="" line=""></data>                                                                                              | 3 2016-03-31 12:39:41 P1234.56 N                                |  |  |  |  |  |  |  |
|          | SMEM, A, END                                                                                                            | End of data                                                     |  |  |  |  |  |  |  |

## 2 General

#### 2.1 KCP Version

The KCP protocol is continuously being improved. With each new version, the KCP protocol version number is incremented. The number of the KCP version implemented in your particular device can be requested using the II command.

Please make sure that you use the correct version of the KCP manual description (this document) for your device. If a command is only available in certain KCP versions, this will be mentioned in the section of the respective command.

#### 2.2 KCP Command Levels

The KCP protocol commands are grouped in multiple levels. While Level 0 and Level 1 are available for all KCP devices, other levels may only be available with certain devices. Please refer to the individual chapter of each level for further details.

It is advised that you try to limit yourself to the lowest level of commands, that you can achieve your goals with. This allows you to connect a larger variety of KCP devices to your software without modifications.

#### 2.3 Conventions in this manual

Throughout this manual, the following conventions are used for command and response syntax:

| u        | Space symbol (dec 32, hex 20)                             |
|----------|-----------------------------------------------------------|
| Ψ        | Commands sent to the balance / measurement device.        |
| <b>^</b> | Responses of the balance / measurement device             |
| «param»  | Parameter name, the brackets (« and ») are not to be sent |
| [ ]      | Optional parameter / expression                           |

#### 2.4 Default communication parameters

By default, each KCP device comes preset to certain communication parameters. The applicable parameters depend on the type of communication interface and are listed in the following paragraphs.

#### 2.4.1 RS-232 / RS-485

Baud rate: 9600 baud/s

Data bits: 8 bits
Parity: none
Stop bits: 1 bit

#### 2.5 Protocol structure

KCP is based on simple ASCII-encoded text commands and responses.

#### 2.5.1 Encoding

All characters and digits are encoded in ASCII – if not specified otherwise.

#### 2.5.2 Case sensitiveness

The protocol is case sensitive. Commands and arguments should be written as described in this manual.

#### 2.5.3 Commands

Every interaction consists of a command, possibly with arguments separated by spaces (symbol \_) and terminated by Windows-style newline characters (*<CR><LF>*):

| Command     |   |               | Δ             | rgur | nents         |     | Term      | inator    |
|-------------|---|---------------|---------------|------|---------------|-----|-----------|-----------|
| <cmd></cmd> | 1 | <arg1></arg1> | <arg2></arg2> |      | <arg3></arg3> | ••• | <cr></cr> | <lf></lf> |

Commands should only be sent in uppercase letters.

#### 2.5.4 Responses

Correctly formatted commands are answered with a response containing the requested data including or following a confirmation of the following form:

| Response    |   | Status                                                                                          |   | Data                | Termi     | inator    |
|-------------|---|-------------------------------------------------------------------------------------------------|---|---------------------|-----------|-----------|
| <cmd></cmd> | נ | A = accepted / acknowledge L = logical error / invalid parameter I = internal / technical error | ı | command<br>specific | <cr></cr> | <lf></lf> |
| ES          |   | Erroneous syntax or unknown comman                                                              |   |                     | <cr></cr> | <lf></lf> |

For commands that only execute actions on the device and do not return information required in your application, you can ignore the responses. However, to increase the reliability of your software, it is a good practice to read and evaluate the responses and act accordingly upon errors.

#### 2.5.5 Examples

The following examples show some very basic interactions using the KCP protocol.

**Example:** Command "Set indication unit to grams (g)" with response "accepted"

| Command: | U  | u  | g   | <cr></cr> | <lf></lf> | _        | Response: | ט  |    | Α  | <cr></cr> | <lf></lf> |
|----------|----|----|-----|-----------|-----------|----------|-----------|----|----|----|-----------|-----------|
| dec:     | 85 | 32 | 103 | 13        | 10        | <b>→</b> | dec:      | 85 | 32 | 65 | 13        | 10        |
| hex:     | 55 | 20 | 67  | 0D        | 0A        |          | hex:      | 55 | 20 | 41 | 0D        | 0A        |

**Example:** Command "Set indication unit to invalid unit" with response "logical error"

| Command: | U  |    | Χ  | <cr></cr> | <lf></lf> | _        | Response: | U  |    | L  | <cr></cr> | <lf></lf> |
|----------|----|----|----|-----------|-----------|----------|-----------|----|----|----|-----------|-----------|
| dec:     | 85 | 32 | 88 | 13        | 10        | <b>→</b> | dec:      | 85 | 32 | 76 | 13        | 10        |
| hex:     | 55 | 20 | 58 | 0D        | 0A        |          | hex:      | 55 | 20 | 4C | 0D        | 0A        |

Example: Invalid command

| Command: | כ  | u  | g   | <cr></cr> | < <i>LF</i> > | _        | Response: | ES    | <cr></cr> | < <i>LF</i> > |
|----------|----|----|-----|-----------|---------------|----------|-----------|-------|-----------|---------------|
| dec:     | 85 | 32 | 103 | 13        | 10            | <b>→</b> | dec:      | 69 83 | 13        | 10            |
| hex:     | 55 | 20 | 67  | 0D        | 0A            |          | hex:      | 45 53 | 0D        | 0A            |

#### 2.6 Command queue and timing

#### 2.6.1 Command queue / sequence

Ideally, the balance queues the data stream it receives and handles one command after the other. When this queue would overflow, the handshake mechanism of the underlying communication interface (e.g. RS-232 CTS/RTS or XON/XOFF handshake) prevents further data packages from the host computer. This allows the host computer to send whole scripts of commands to the balance.

Depending on the balance type (processor capabilities), this may not be possible. For maximum reliability, wait for the answer of a command before sending the next command – otherwise, for some balances, data could be corrupted or commands be missed.

#### 2.6.2 Timeouts

There is no timeout between each character on a single command line (up to and including CR LF). An incomplete line will remain in the balance buffer without timeout until the line is completed. If the balance receive buffer is overflowing because there was no line end, the whole buffer is cleared.

This allows commands to be entered over a terminal software by a human user (one character at a time).

#### 2.7 Units

All commands and responses in the KCP protocol use the following unit symbols:

| Name        | Symbol     | Comment                                     |
|-------------|------------|---------------------------------------------|
| Kilogram    | kg         | - no comment -                              |
| Ton         | t          | = 1000 kg                                   |
| Gram        | g          | = 0.001 kg                                  |
| Milligram   | mg         | = 0.000001 kg                               |
| Pound       | lb         | = 0.45359237 kg (lb. av. – Avoirdupois)     |
| Pieces      | pcs        | requires piece weight                       |
| Percent     | %          | requires weight of 100%                     |
| Newton      | N          | Unit of force (where applicable)            |
| Kilonewton  | kN         | = 1000 N                                    |
| Ton-force   | tf         | = 9.80665 kN                                |
|             |            | (weight of one ton due to standard gravity) |
| Pound-force | lbf / klbf | = 4.4482216152605 N                         |
|             |            | (weight of one pound to standard gravity)   |

#### 2.8 Message codes / Error codes

The following codes are used for errors and messages. In the protocol, the code number may be prefixed, e.g. "E1000".

| Code | Comment    |
|------|------------|
| 0    | no message |
|      | TODO       |

## 3 KCP commands – category "Device" (level 0)

| @    | Cancel                                    |
|------|-------------------------------------------|
| IO   | List all implemented KCP commands         |
| I1   | Query KCP levels and KCP versions         |
| 12   | Query device information (type, capacity) |
| 13   | Query device software version             |
| 14   | Query serial number                       |
| 15   | Query software identification number      |
| IBIM | Query/set balance external model number   |

## **Description**

@ can be used to achieve the same effect as disconnecting and reconnecting the power supply, which empties the volatile memories. The purpose of this command is to initiate a command sequence.

## **Syntax**

#### Command

| @ | Resets the device to the condition found after      |
|---|-----------------------------------------------------|
|   | switching on, but without a zero setting being per- |
|   | formed.                                             |

#### Responses

| I4_A_"«SNR»" | Serial number is emitted; the device is ready for    |
|--------------|------------------------------------------------------|
|              | operation. (serial number may not available, then it |
|              | is N/A)                                              |

#### **Comments**

- All commands awaiting responses are cancelled.
- If the device is on standby, it is switched on.
- The cancel command is always executed.
- The emitted serial number corresponds to the serial number of the terminal (if one is present), see [14].

## **Examples**

| ¥        | @                 | Cancel                                             |
|----------|-------------------|----------------------------------------------------|
| <b>→</b> | I4_A_"B021002593" | Device is "reset", its serial number is B021002593 |

#### See also

→ I4 – Query serial number

## 10 - List all implemented KCP commands

#### **Description**

The IO command lists all commands implemented in the present software.

All level 0 commands are listed in alphabetical order before all commands of level 1 etc.

#### **Syntax**

#### Command

| IO | Send list of all implemented KCP commands. |
|----|--------------------------------------------|
|    | Cond not of an implemental real commander  |

#### Responses

| <pre>I0_B_«Level»_"«Command»" I0_B_«Level»_"«Command»" I0_B I0_A_«Level»_"«Command»"</pre> | 1st command implemented. 2nd (next) command implemented Last command implemented.                |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| IO_I                                                                                       | Command understood but currently not executable (device is currently executing another command). |

#### Parameters / Return values

| Name    | Type    | Values                                                | Meaning     |
|---------|---------|-------------------------------------------------------|-------------|
| Level   | integer | Number of the KCP level where the command belongs to: |             |
|         |         | 0                                                     | KCP level 0 |
|         |         | 1                                                     | KCP level 1 |
|         |         | 2                                                     | KCP level 2 |
|         |         |                                                       |             |
| Command | string  |                                                       | KCP command |

#### **Comments**

- If a terminal and a weigh module, weighing platform are being used, the command list of the terminal is output. If only a weigh module, platform is being used, the command list of the weigh module, platform is shown.
- If IO lists commands that cannot be found in the manual, these are reserved commands "for internal use" or "for future use", and should not be used or altered in any way.

## **Examples**

| ¥        | 10           | Send list of commands                  |
|----------|--------------|----------------------------------------|
| <b>↑</b> | IO_B_O_"IO"  | Level 0 command 10 implemented         |
| <b>↑</b> | IO_B         |                                        |
| <b>↑</b> | IO_B_O_"@"   | Level 0 command @ (cancel) implemented |
| <b>↑</b> | I0_B_1_"D"   | Level 0 command D implemented          |
| <b>↑</b> | IO_B         |                                        |
| <b>↑</b> | IO_A_3_"SM4" | Level 3 command SM4 implemented        |

#### See also

| <b>→</b> | @ - cancel |
|----------|------------|

## **I1**, KCPV – Query KCP levels and KCP versions

## **Description**

Query KCP level and versions.

## **Syntax**

## Command

| т1 | Query KCP level and KCP versions. |
|----|-----------------------------------|
|    | Query Nor lever and Nor versions. |

## Responses

| <pre>I1_A_"«Level»"_"«V0»"_"«V1»"_"«V2.</pre> | Current KCP level and KCP versions              |
|-----------------------------------------------|-------------------------------------------------|
| "_"«V3»"                                      |                                                 |
| I1_I                                          | Command understood but currently not executable |

## Parameters / Return values

| Name  | Туре   | Values | Meaning                                                                                                          |
|-------|--------|--------|------------------------------------------------------------------------------------------------------------------|
| Level | string | 0      | KCP level 0                                                                                                      |
|       |        | 01     | KCP level 0 and 1                                                                                                |
|       |        | 03     | KCP level 0 and 3                                                                                                |
|       |        | 013    | KCP level 0, 1 and 3                                                                                             |
|       |        |        |                                                                                                                  |
| V0V3  | string |        | KCP versions of the related level (0 to 3) (see cover page of this manual for the KCP version of these commands) |

## **Examples**

| Ψ        | I1                              | Query the current KCP level and version    |
|----------|---------------------------------|--------------------------------------------|
| <b>↑</b> | I1_A_"123"_"2.00"_"2.20"_"1.00" | Level 0-3 is implemented and the according |
|          | _"1.50"                         | version numbers are shown                  |

## KCPC - Query KCP categories

## Description

Query KCP command categories.

## **Syntax**

## Command

| Query supported NOT command categories. | KCPC | Query supported KCP command categories. |
|-----------------------------------------|------|-----------------------------------------|
|-----------------------------------------|------|-----------------------------------------|

## Responses

| <pre>KCPC_B_"«CategoryName<sub>1</sub>»" KCPC_B_"«CategoryName<sub>2</sub>»"</pre> | First supported KCP command category. Second supported KCP command category. |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| KCPC_A_"«CategoryName <sub>n</sub> »"                                              | Last supported KCP command category.                                         |
| KCPC_I                                                                             | Command understood but currently not executable                              |

## Parameters / Return values

| Name         | Type   | Values | Meaning                                    |
|--------------|--------|--------|--------------------------------------------|
| CategoryName | string |        | KCP category internal name                 |
|              |        |        | (see the separate chapters of this manual) |

## **Examples**

| 4        | KCPC                    | Query the current KCP level and version |
|----------|-------------------------|-----------------------------------------|
| <b>1</b> | KCPC_B_"Device"         |                                         |
|          | KCPC_B_"Counting"       |                                         |
|          | KCPC_A_"Weighing Basic" |                                         |

## 12, IBMT - Query device information (type, capacity)

## **Description**

Use I2 to query information about the device (e.g. type and weighing capacity). The response is output as a whole string.

## **Syntax**

#### Command

| 12 | Query of the device . |
|----|-----------------------|

#### Responses

| I2_A_"«Type»_«Capacity»_«Unit»" | Device/instrument type and capacity, with the correct number of digits depending on d.                        |
|---------------------------------|---------------------------------------------------------------------------------------------------------------|
| 12_1                            | Command understood but currently not executable (device is currently executing another command, e.g. taring). |

#### Parameters / Return values

| Name     | Type   | Values | Meaning                         |
|----------|--------|--------|---------------------------------|
| Type     | string |        | Type of device / instrument     |
| Capacity | string |        | Capacity of device / instrument |
| Unit     | string |        | Weight unit                     |

#### **Comments**

- With multi-range devices, the last decimal place is available only in the finer ranges.
- The number of characters of "text" depends on the device type and capacity.

## **Examples**

| ¥        | I2                        | Query of the device data |
|----------|---------------------------|--------------------------|
| <b>↑</b> | I2_A_"GAT_6K-4_6000.00_g" | Device type and capacity |

## 13 - Query device software version

## **Description**

Provides the device software version(s).

## **Syntax**

#### Command

| 1 | 13    | Query of the device software version. |
|---|-------|---------------------------------------|
|   | 1 = 0 | Gaery of the device contrare version. |

#### Responses

| <pre>I3_A_"«Software»[_«TNR»]"</pre> | Device software version and type number.                                                                      |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------|
| [ "«ApplicationSoftware»"]           |                                                                                                               |
| 13_1                                 | Command understood but currently not executable (device is currently executing another command, e.g. taring). |

#### Parameters / Return values

| Name                | Туре   | Values | Meaning                                                                                                                                                                       |
|---------------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Software            | string |        | (Legally relevant) software (firmware) version                                                                                                                                |
| TNR                 | string |        | Type number (number identifying the software configuration parameters used).  Not sent, if software is not parameterizable / configurable to different types (most firmware). |
| ApplicationSoftware | string |        | (Not legally relevant) application soft (firmware) ware version, if available.                                                                                                |

## **Comments**

- Only the software version of the terminal software is issued.
- If no terminal is present, the bridge software is issued instead.

## **Examples**

| 4        | 13                         | Query of the Software version number(s) and type definition number                                                                 |
|----------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| <b>↑</b> | I3_A_"4.10"                | 4 .10: Software version number. No type number.                                                                                    |
| <b>↑</b> | I3_A_"4.10_10.142"         | 4 .10: Software version number. 10.142: Type number.                                                                               |
| <b>↑</b> | I3_A_"4.10_10.142"_"2.141" | 4 .10: (Legally relevant) software version number. 10.142: Type number. 2.141: (Not legally relevant) application software number. |

#### **Description**

Use I4 to query the serial number of the device. In the case of devices, the serial number of the terminal is output.

#### **Syntax**

#### Command

| I4<br>IBIS   | Query of the serial number.         |
|--------------|-------------------------------------|
| IBIS_"«SNR»" | Set the serial number (if allowed). |

#### Responses

| I4_A_"«SNR»"   | Serial number.                                 |
|----------------|------------------------------------------------|
| IBIS_A_"«SNR»" |                                                |
| I4_I           | Command not understood, not executable at pre- |
| IBIS_I         | sent.                                          |
| IBIS_A         | The serial number is set successfully.         |

#### Parameters / Return values

| Name | Type   | Values | Meaning       |
|------|--------|--------|---------------|
| SNR  | string |        | Serial number |

#### **Comments**

- Due to production / cost reasons, the serial number may not be available over KCP.
   Here, the answer is N/A.
- The serial number agrees with that on the model plate and is different for every device.
- The serial number can be used, for example, as a device address in a network solution.
- The device response to I4 appears unsolicited after switching on and after the cancel command @.
- Only the serial number of the terminal is issued.
- If no terminal is present, the serial number of the bridge is issued instead.

#### **Examples**

| Ψ        | I4               | Query of serial number          |
|----------|------------------|---------------------------------|
| <b>↑</b> | I4_A_"WX1712345" | The serial number is: WX1712345 |
|          |                  |                                 |
| ¥        | IBIS_"WX1712345" | Set serial number               |
| <b>↑</b> | IBIS_A           | Serial number set.              |
|          |                  |                                 |
| 4        | IBIS             | Query of serial number          |
| <b>↑</b> | IBIS_A_"N/A"     | No serial number available.     |

#### See also

## 15 - Query software identification number

## Description

Identical to 13.

## IBIM - Query/set balance external model number

## **Description**

Set the balance brand model number (external article number for clients/sale).

## **Syntax**

## Command

| IBIM                 | Query external model number. |
|----------------------|------------------------------|
| IBIM_"«ModelNumber»" | Set external model number.   |

## Responses

| IBIM_A_"«ModelNumber»" | The external model number.                     |
|------------------------|------------------------------------------------|
| IBIM_A                 | The external model number is set successfully. |
| IBIM_L                 | Model number invalid (too short/long).         |

#### Parameters / Return values

| Name        | Type   | Values | Meaning                                     |
|-------------|--------|--------|---------------------------------------------|
| ModelNumber | string |        | External model number (max. 31 characters). |

## **Examples**

| T        | IBIM_"IFB 30K-2M" | Set model number  |
|----------|-------------------|-------------------|
| <b>↑</b> | IBIM_A            | Model number set. |

## 4 KCP commands – category "Device Display" (level 1)

| D    | Display: Write text to display |
|------|--------------------------------|
| DM   | Query/set display mode         |
| DW   | Display: Show weight           |
| IBBS | Query battery status           |
| K    | Keys: Set configuration        |
| PWR  | Power on/off                   |

## D - Display: Write text to display

## **Description**

#### **Syntax**

#### Command

| D_"«DisplayText»" | Write text into the device display. |
|-------------------|-------------------------------------|
|-------------------|-------------------------------------|

#### Responses

| D_A | Command understood and executed successfully:<br>Text appears left-aligned in the device display<br>marked by a symbol, e.g. *. |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
| D_I | Command understood but currently not executable.                                                                                |
| D_L | Command understood but not executable (incorrect parameter or device with no display).                                          |

#### Parameters / Return values

| Name        | Туре   | Values | Meaning                    |
|-------------|--------|--------|----------------------------|
| DisplayText | string |        | Text on the device display |

#### **Comments**

- A symbol in the display, e.g. \* indicates that the device is not displaying a weight value.
- The maximum number of characters of "text" visible in the display depends on the device type. If the maximum number of characters is exceeded, the text disappears on the right side.
- Quotation marks can be displayed as indicated

#### **Examples**

| <b>V</b> | D_"HELLO" | Write "HELLO" into the device display             |
|----------|-----------|---------------------------------------------------|
| <b>↑</b> | D_A       | The full text HELLO appears in the device display |

| ¥        | D_" " | Clear the device display                            |
|----------|-------|-----------------------------------------------------|
| <b>↑</b> | D_A   | Device display cleared, marked by a symbol, e. g. * |

#### See also

| _ | D' 1 01 '11               |
|---|---------------------------|
| _ | DW – Display: Show weight |
| _ | by bisplay. Chow weight   |

## DM - Query / set display mode

## **Description**

Describe the command in detail here.

## **Syntax**

## Command

| DM                       | Query display mode. |
|--------------------------|---------------------|
| DM_ <i>«DisplayMode»</i> | Set display mode.   |

## Responses

| DM_A_«DisplayMode» | Current display mode.                            |
|--------------------|--------------------------------------------------|
| DM_A               | Display mode is set successfully.                |
| DM_I               | Command understood but currently not executable. |
| DM_L               | Command understood but not executable            |
|                    | (no display or incorrect parameter).             |

#### Parameters / Return values

| Name        | Type | Values | Meaning                              |
|-------------|------|--------|--------------------------------------|
| DisplayMode | enum | DEF    | Regular display mode.                |
|             |      | OFF    | Display completely off (no segments) |
|             |      | TXT    | Display text defined in "D" only.    |

## **Comments**

This command can be used (combined with  $\mbox{K}$ ), to disable the balance indication. Useful when only the remote indicator displays relevant/current information.

## **Examples**

| Ψ        | DM                      | Query current display mode.                             |
|----------|-------------------------|---------------------------------------------------------|
| <b>↑</b> | DM_A_DEF                | The current, stable ("S") weight value is 100.00 g      |
| ¥        | DM OFF                  | Switch display off.                                     |
| <b>↑</b> | DM_A                    | OK, display switched off.                               |
| <b>\</b> | DM_TXT DM_"Hello World" | Set display to display text only, display "Hello World" |
| <b>1</b> | DM_A                    | OK.                                                     |

#### See also

| <b>→</b> | D - Display text |
|----------|------------------|

## DW - Display: Show weight

## **Description**

Writes the current weight value to the device display using the set unit. This command is used to reset the display after using the  $\ensuremath{\mathbb{D}}$  command.

## **Syntax**

#### Command

| DW        | Switch the main display to weight mode. |
|-----------|-----------------------------------------|
| Responses |                                         |

| DW_A | Command understood and executed successfully: Main display shows the current weight value. |
|------|--------------------------------------------------------------------------------------------|
| DW_I | Command understood but currently not executable.                                           |

## Comments

DW resets the device display following a [D] command.

## **Examples**

| 4        | DW   | Switch the main display to weight mode      |
|----------|------|---------------------------------------------|
| <b>1</b> | DW_A | Main display shows the current weight value |

#### See also

→ D – Display: Write text to display

## IBBS - Query battery status

## **Description**

Query the current battery status.

## **Syntax**

## Command

| IBBS | Retrieves the current battery capacity and charging |
|------|-----------------------------------------------------|
|      | status.                                             |

## Responses

| IBBS_A_«BatteryIndicator»_%_«ChargeStatus» | Current battery status.                |
|--------------------------------------------|----------------------------------------|
| IBBS_L                                     | No battery or no mechanism to retrieve |
|                                            | battery charging status.               |

## Parameters / Return values

| Name             | Туре    | Values  | Meaning                                                                                                                                                                                                                                                                       |
|------------------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BatteryIndicator | integer | 0 - 100 | Battery charge status in percent (how much battery capacity is left). If the device does not support providing the exact battery status, the following values will be sent:   • 0: battery low  • 100: battery charged sufficiently or no information about battery available |
| 1                |         | N       | No external power, not charging, running from battery.                                                                                                                                                                                                                        |
|                  |         | С       | Currently charging.                                                                                                                                                                                                                                                           |
|                  |         | F       | Fully charged.                                                                                                                                                                                                                                                                |

## Comments

This command is mainly used for displaying a battery indicator in remote devices.

#### **Description**

With the  $\mbox{K}$  command, the behavior of the terminal keys may be configured: first, the  $\mbox{K}$  command controls whether a key invokes its corresponding function or not and second, it configures whether an indication of which key has been pressed or released is sent to the host interface or not.

Using this functionality, an application running on a connected system (e.g. a PC or PLC) may make use of the device terminal to interact with the device operator.

#### **Syntax**

#### Command

| K_ <i>«Mode»</i> | Set configuration. |
|------------------|--------------------|

#### Responses

| K_A[_«FunctionID»]          | Command understood and executed successfully.                           |  |  |
|-----------------------------|-------------------------------------------------------------------------|--|--|
|                             | Mode 4: Function with «FunctionID» was                                  |  |  |
|                             | invoked by pressing the corresponding key and executed successfully.    |  |  |
| K_I[_ <i>«FunctionID»</i> ] | Command understood but currently not executable (device is actually     |  |  |
|                             | in menu or input mode).                                                 |  |  |
|                             | Mode 4: Function with <i>«FunctionID»</i> by pressing the corresponding |  |  |
|                             | key, but it could not be successfully executed (e.g. calibration was    |  |  |
|                             | aborted by user or a negative value was tared).                         |  |  |
| K_L                         | Command understood but not executable (incorrect                        |  |  |
|                             | or no parameter).                                                       |  |  |

#### **Additional Responses in Mode 3:**

| K_«EventID»_«KeyID» | Key «KeyID» has issued an «EventID». |
|---------------------|--------------------------------------|
|---------------------|--------------------------------------|

#### Additional Responses in Mode 4:

| K_B_«FunctionID» | Function    | with   | «FunctionID»       | was     | invoked  | and |
|------------------|-------------|--------|--------------------|---------|----------|-----|
|                  | started; th | ne exe | ecution needs time | e to co | omplete. |     |

#### Parameters / Return values

| Name       | Туре    | Values | Meaning                                             |
|------------|---------|--------|-----------------------------------------------------|
| Mode       | integer | 1      | Functions are executed, no indications are sent     |
|            |         |        | (factory setting)                                   |
|            |         | 2      | Functions are not executed, no indications are sent |
|            |         | 3      | Functions are not executed, indications are sent    |
|            |         | 4      | Functions are executed, indications are sent        |
| EventID    | char    | R      | Key was pressed and held around 2 seconds           |
|            |         | С      | Key was released(after being pressed shortly or for |
|            |         |        | 2 second)                                           |
| FunctionID | integer | 0      | Adjustment                                          |
|            |         | 1      | Tare                                                |
|            |         | 2      | Zero                                                |
|            |         | 3      | Data transfer to printing device                    |
|            |         | 4 6    | Reserved for future use                             |
|            |         | 7      | Test                                                |
| KeyID      | integer | 1      | Home                                                |
|            |         | 2      | User profile                                        |
|            |         | 3      | Settings                                            |
|            |         | 5      | Zero                                                |
|            |         | 7      | Transfer                                            |
|            |         | 8      | Configure actual applications                       |
|            |         | 9      | Applications                                        |

## **Comments**

- K\_1 is the factory setting (default value).
- $K_1$  active after device switched on and after the cancel command [0].
- Only one K mode is active at one time.

## **Examples**

When a code with a long press is sent, new key commands will not be accepted.

| Ψ        | K_4   | Set mode 4: when a key is pressed, execute the corresponding function and send the function number as a response |
|----------|-------|------------------------------------------------------------------------------------------------------------------|
| <b>1</b> | K_A   | Command executed successfully                                                                                    |
| <b>↑</b> | K_B_1 | The taring function has been started → taring active                                                             |
| <b>↑</b> | K_A_1 | Taring completed successfully                                                                                    |
| <b>↑</b> | K_B_1 | The taring function has been started → taring active                                                             |
| <b>↑</b> | K_I_1 | Taring not completed successfully, taring aborted (e.g. tried to tare a negative value)                          |

## **Description**

Switch device on, off or into standby.

## **Syntax**

## Command

| PWR          | Query current power state (if possible). |
|--------------|------------------------------------------|
| PWR_«On/Off» | Set current power state.                 |

## Responses

| PWR_A        | Device has been switched off successfully.                                                                                                             |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| PWR_A        | Device has been switched on successfully.                                                                                                              |
| I4_A_"«SNR»" | Serial number is sent after startup.                                                                                                                   |
| PWR_I        | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| PWR_L        | Command understood but not executable (not capable of switching power states or incorrect/unsupported parameter).                                      |

#### Parameters / Return values

| Name   | Type    | Values | Meaning                                            |
|--------|---------|--------|----------------------------------------------------|
| On/Off | integer | 0      | Switch to standby mode (lower power consumption).  |
|        |         | 1      | Switch device on.                                  |
|        |         | 2      | Switch device off completely (lowest power state). |

## Comments

• It depends on the device whether switching on from the lowest power state is possible using the PWR command.

## 5 KCP commands – category "Weighing Basic" (level 0)

The commands from Level 0 offer the very basic functions available for every basic weighing device.

| S    | Send stable indication (weight value / measured value)                      |
|------|-----------------------------------------------------------------------------|
| SI   | Send current indication immediately                                         |
| SIR  | Send current indication immediately and repeat                              |
| SX   | Send stable indication with additional digits                               |
| SXI  | Send stable indication with additional digits immediately                   |
| SXIR | Send stable indication with additional digits immediately and repeat        |
|      |                                                                             |
| Т    | Tare                                                                        |
| T    | Tare Tare immediately                                                       |
|      |                                                                             |
| TI   | Tare immediately                                                            |
| TI   | Tare immediately  Tare or zero the balance (e.g. combined tare/zero button) |

## S - Send stable weight value

#### **Description**

Use S to send a stable weight value, along with the unit.

#### **Syntax**

#### Command

| S Send the current stable net weight value. |
|---------------------------------------------|
|---------------------------------------------|

#### Responses

| S_S_«WeightValue»_«Unit» | Current stable weight value in unit set.               |  |
|--------------------------|--------------------------------------------------------|--|
| S_I                      | Command understood but currently not executable        |  |
|                          | (device is currently executing another command,        |  |
|                          | e.g. taring, or timeout as stability was not reached). |  |
| S_L                      | Command understood but not executable (incorrect       |  |
|                          | parameter).                                            |  |
| S_+                      | Device in overload range.                              |  |
| S                        | Device in underload range.                             |  |
| S_S_«ErrorCode»          | Code of error occurred                                 |  |

#### Parameters / Return values

| Name        | Туре   | Values | Meaning                  |  |
|-------------|--------|--------|--------------------------|--|
| WeightValue | float  |        | Weight value             |  |
| Unit        | string |        | Currently displayed unit |  |
| ErrorCode   | string |        | Code of error occurred   |  |

#### **Comments**

- The duration of the timeout depends on the device type.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point. The minus sign for negative weight values belongs to the weight value and is also right aligned (without space between minus sign and number).
- Preceding zeros are not shown except for the zero to the left of the decimal point.
- For multi-range or floating range balances, the decimal places at the end that are not displayed (in higher ranges) are shown as spaces.

## **Examples**

| T        | S                                                | Send a stable weight value                             |
|----------|--------------------------------------------------|--------------------------------------------------------|
| _        | 9                                                |                                                        |
| <b>1</b> | S_S100.00_g                                      | The current, stable ("S") weight value is 100.00 g     |
| <b>↑</b> | S_S100.00_g                                      | The current, stable ("S") weight value is -100.00 g    |
| <b>↑</b> | S_S200.00_g                                      | In a higher range (for multi/floating-range balances), |
|          | $S_S_{1}_{2}_{2}_{2}_{2}_{2}_{2}_{2}_{2}_{2}_{2$ | the last digit disappears and is replaced with a       |
|          |                                                  | space.                                                 |
|          | S_S200.0_g                                       |                                                        |
|          | $S_{S_{1}}$ 200. $g (d = 0.1/1g)$                |                                                        |
| <b>↑</b> | S_S200g                                          | Theoretically, even two spaces could be missing        |
|          |                                                  | with d=0.01/0.1/1g.                                    |
| <b>↑</b> | S_S10000_g                                       | When there is no decimal point, the value is still     |
|          |                                                  | right aligned as described above.                      |

## SI - Send weight value immediately

## **Description**

Use SI to immediately send the current weight value, along with the unit.

#### **Syntax**

#### Command

| SI | Send the current net weight value, irrespective of |
|----|----------------------------------------------------|
|    | device stability.                                  |

#### Responses

| S_S_«WeightValue»_«Unit» | Stable weight value in unit set                  |  |
|--------------------------|--------------------------------------------------|--|
| S_D_«WeightValue»_«Unit» | Non-stable (dynamic) weight value in unit set    |  |
| S_I                      | Command understood but currently not executable  |  |
|                          | (device is currently executing another command,  |  |
|                          | e.g. taring).                                    |  |
| S_L                      | Command understood but not executable (incorrect |  |
|                          | parameter).                                      |  |
| S <sub>u</sub> +         | Device in overload range.                        |  |
| S <sub>u</sub> -         | Device in underload range.                       |  |
| S_S_«ErrorCode»          | Code of error occurred                           |  |

## Parameters / Return values

| Name        | Туре   | Values | Meaning                  |  |
|-------------|--------|--------|--------------------------|--|
| WeightValue | float  |        | Weight value             |  |
| Unit        | string |        | Currently displayed unit |  |
| ErrorCode   | string |        | Code of error occurred   |  |

## **Comments**

- The device response to the command SI is the last internal weight value (stable or dynamic) before receipt of the command SI.
- The weight value is formatted as described in the comments of the S command.

## **Examples**

| ¥        | SI          | Send current weight value                          |  |  |
|----------|-------------|----------------------------------------------------|--|--|
| <b>1</b> | S_D129.07_g | The weight value is unstable (dynamic, "D") and is |  |  |
|          |             | currently 129.07 g                                 |  |  |

## SIR - Send weight value immediately and repeat

## **Description**

Use SIR to immediately send the current weight value, along with the unit, on a continuous basis.

#### **Syntax**

#### Command

| SIR                              | Send the net weight values repeatedly, irrespective of device stability. The default time between trans- |  |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
|                                  | missions is device dependent (typically around 15 Hz).                                                   |  |  |  |
| SIR_«TimeMsBetweenTransmissions» | As above, setting the time between transmissions explicitly (in milliseconds).                           |  |  |  |

#### Responses

| S_S_«WeightValue»_«Unit» | Stable weight value in unit set                  |  |
|--------------------------|--------------------------------------------------|--|
| S_D_«WeightValue»_«Unit» | Non-stable (dynamic) weight value in unit set    |  |
| S_I                      | Command understood but currently not executable  |  |
|                          | (device is currently executing another command,  |  |
|                          | e.g. taring).                                    |  |
| S_L                      | Command understood but not executable (incorrect |  |
|                          | parameter).                                      |  |
| S_+                      | Device in overload range.                        |  |
| S                        | Device in underload range.                       |  |
| S_S_«ErrorCode»          | Code of error occurred                           |  |

#### Parameters / Return values

| Name                       | Туре   | Values | Meaning                               |
|----------------------------|--------|--------|---------------------------------------|
| TimeMsBetweenTransmissions | int    |        | Time in milliseconds between repeated |
|                            |        |        | transmissions                         |
| WeightValue                | float  |        | Weight value                          |
| Unit                       | string |        | Currently displayed unit              |
| ErrorCode                  | string |        | Code of error occurred                |

## **Comments**

- SIR is overwritten by the commands S, SI, @ and hardware break and hence cancelled.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point.

## **Examples**

| T        | SIR         | Send current weight values at intervals         |
|----------|-------------|-------------------------------------------------|
| <b>↑</b> | S_D129.07_g | The device sends stable ("S") or unstable ("D") |
| <b>↑</b> | S_D129.08_g | weight values at intervals                      |
| <b>↑</b> | S_S129.09_g |                                                 |
| <b>↑</b> | S_S129.09_g |                                                 |
| <b>↑</b> | S_D129.87_g |                                                 |
| 1        | S           |                                                 |

## SX - Send stable indication with additional digits

#### **Description**

Use SX to send a stable indication with one additional digit, along with the unit.

#### **Syntax**

#### Command

| SX | Send the current stable net weight value with one |
|----|---------------------------------------------------|
|    | additional digit.                                 |

#### Responses

| SX_S_«WeightValue»_«Unit» | Current stable weight value with one additional digit in unit set.                                                                                     |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| SX_I                      | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| SX_L                      | Command understood but not executable (incorrect parameter).                                                                                           |
| SX_+                      | Device in overload range.                                                                                                                              |
| SX                        | Device in underload range.                                                                                                                             |
| SX_Z                      | Device zero out of range.                                                                                                                              |
| SX_S_ <i>«ErrorCode»</i>  | Code of error occurred                                                                                                                                 |

#### Parameters / Return values

| Name        | Type Values Meaning |  | Meaning                  |
|-------------|---------------------|--|--------------------------|
| WeightValue | float               |  | Weight value             |
| Unit        | string              |  | Currently displayed unit |
| ErrorCode   | string              |  | Code of error occurred   |

#### **Comments**

- The duration of the timeout depends on the device type.
- The weight value is formatted as a right aligned string with 11 characters including the decimal point.
- Preceding zeros are not shown except for the zero to the left of the decimal point.
- For multi-range or floating range balances, the decimal places at the end that are not displayed (in higher ranges) are shown as spaces.

## **Examples**

| Ψ        | SX            | Send a stable weight value with one additional digit                                                 |
|----------|---------------|------------------------------------------------------------------------------------------------------|
| <b>↑</b> | SX_S100.003_g | The current stable ("S") weight value is 100.00 g. (In x10 format, there is one more decimal place.) |

## SXI - Send indication with additional digits immediately

## **Description**

Use SXI to immediately send the current indication with one additional digit, along with the unit.

#### **Syntax**

#### Command

| SXI | Send the current net weight value with one addi- |
|-----|--------------------------------------------------|
|     | tional digit, irrespective of device stability.  |

#### Responses

| SX_S_«WeightValue»_«Unit» | Stable weight value in unit set                 |  |
|---------------------------|-------------------------------------------------|--|
| SX_D_«WeightValue»_«Unit» | Non-stable (dynamic) weight value in unit set   |  |
| SX_I                      | Command understood but currently not executable |  |
|                           | (device is currently executing another command, |  |
|                           | e.g. taring).                                   |  |
| SX_+                      | Device in overload range.                       |  |
| SX                        | Device in underload range.                      |  |
| SX_Z                      | Device zero out of range                        |  |
| SX_S_«ErrorCode»          | Code of error occurred                          |  |

#### Parameters / Return values

| Name Type Values Meaning |        | Meaning                  |                        |  |
|--------------------------|--------|--------------------------|------------------------|--|
| WeightValue              | float  | Weight value             |                        |  |
| Unit                     | string | Currently displayed unit |                        |  |
| ErrorCode                | string |                          | Code of error occurred |  |

#### **Comments**

- The device response to the command SXI is the last internal weight value (stable or dynamic) before receipt of the command SXI.
- The weight value is formatted as described in the comments of the SX command.

## **Examples**

| ¥        | SXI           | Send current weight value                                                                                                |  |
|----------|---------------|--------------------------------------------------------------------------------------------------------------------------|--|
| <b>↑</b> | SX_D129.072_g | The weight value is unstable (dynamic, "D") and is currently 129.07 g. (In x10 format, there is one more decimal place.) |  |

## SXIR - Send indication with additional digits immediately and repeat

## **Description**

Use  ${\tt SXIR}$  to immediately send the current indication with one additional digit, along with the unit, on a continuous basis.

## **Syntax**

#### Command

| SXIR                              | Send the net weight values repeatedly, irrespective of device stability. The default time between transmissions is device dependent (typically around 15 Hz). |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SXIR_«TimeMsBetweenTransmissions» | As above, setting the time between transmissions explicitly (in milliseconds).                                                                                |  |

#### Responses

| SX_S_«WeightValue»_«Unit» | Stable weight value in unit set                   |
|---------------------------|---------------------------------------------------|
| SX_D_«WeightValue»_«Unit» | Non-stable (dynamic) weight value (in x10 format) |
|                           | in unit set                                       |
| SX_I                      | Command understood but currently not executable   |
|                           | (device is currently executing another command,   |
|                           | e.g. taring).                                     |
| SX_L                      | Command understood but not executable (incorrect  |
|                           | parameter).                                       |
| SX_+                      | Device in overload range.                         |
| SX                        | Device in underload range.                        |
| SX_Z                      | Device zero out of range                          |
| SX_S_«ErrorCode»          | Code of error occurred                            |

## Parameters / Return values

| Name                       | Туре   | Values | Meaning                               |
|----------------------------|--------|--------|---------------------------------------|
| TimeMsBetweenTransmissions | int    |        | Time in milliseconds between repeated |
|                            |        |        | transmissions                         |
| WeightValue                | float  |        | Weight value                          |
| Unit                       | string |        | Currently displayed unit              |
| ErrorCode                  | string |        | Code of error occurred                |

## **Comments**

- SXIR is overwritten by the commands SX, SXI, @ and hardware break and hence cancelled.
- The weight value is formatted as described in the comments of the SX command.

## **Examples**

| Ψ        | SXIR          | Send current weight values with one additional digit at intervals |
|----------|---------------|-------------------------------------------------------------------|
| <b>↑</b> | SX_D129.071_g | The device sends stable ("S") or unstable ("D")                   |
| <b>↑</b> | SX_D129.083_g | weight values at intervals                                        |
| <b>↑</b> | SX_S129.087_g |                                                                   |
| <b>1</b> | SX_S129.092_g |                                                                   |
| <b>↑</b> | SX_D129.865_g |                                                                   |
| <b>1</b> | SX            |                                                                   |

## **Description**

Use  ${\tt T}$  to tare the device. The next stable weight value will be saved in the tare memory.

#### Command

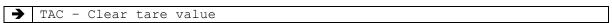
| T | Tare, i.e. store the next stable weight value as a |
|---|----------------------------------------------------|
|   | new tare weight value.                             |

#### Responses

| T_S_«TareWeightValue»_«Unit» | Taring successfully performed. The tare weight value returned corresponds to the weight change on the device in the unit set since the last zero setting.    |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T_I                          | Command understood but currently not executable (device is currently executing another command, e.g. zero setting, or timeout as stability was not reached). |
| T_L                          | Command understood but not executable (incorrect parameter).                                                                                                 |
| T_+                          | Upper limit of taring range exceeded.                                                                                                                        |
| Т                            | Lower limit of taring range exceeded.                                                                                                                        |

#### Parameters / Return values

| Name            | Туре   | Values | Meaning                  |
|-----------------|--------|--------|--------------------------|
| TareWeightValue | float  |        | Weight value             |
| Unit            | string |        | Currently displayed unit |


#### **Comments**

- The tare memory is overwritten by the new tare weight value.
- The duration of the timeout depends on the device type.
- Clearing tare memory: See TAC.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point.

#### **Examples**

| ¥        | T           | Tare                                                               |
|----------|-------------|--------------------------------------------------------------------|
| <b>↑</b> | T_S100.00_g | The device is tared and has a value of 100.00 g in the tare memory |

#### See also



## TI - Tare immediately

#### **Description**

Use TI to tare the device immediately and independently of device stability.

#### Command

| Ī | TI | Tare immediately, i.e. store the current weight     |
|---|----|-----------------------------------------------------|
|   |    | value, which can be stable or non stable (dynamic), |
|   |    | as are weight value.                                |

#### Responses

| TI_S_«TareWeightValue»_«Unit» | Taring performed, stable tare value.                                                            |
|-------------------------------|-------------------------------------------------------------------------------------------------|
|                               | The new tare value corresponds to the weight                                                    |
|                               | change on the device since the last zero setting.                                               |
| TI_D_«TareWeightValue»_«Unit» | Taring performed, non-stable (dynamic) tare value.                                              |
| TI_I                          | Command understood but currently not executable (device is currently executing another command, |
| mt t                          | e.g. zero setting).  Command understood but not executable (e.g.                                |
| TI_L                          | Command understood but not executable (e.g. certified version of the device).                   |
| TI_+                          | Upper limit of taring range exceeded.                                                           |
| TI                            | Lower limit of taring range exceeded.                                                           |

#### Parameters / Return values

| Name            | Туре   | Values | Meaning                  |
|-----------------|--------|--------|--------------------------|
| TareWeightValue | float  |        | Tare Weight value        |
| Unit            | string |        | Currently displayed unit |

#### Comments

- The tare memory will be overwritten by the new tare weight value.
- After a non-stable (dynamic) stored tare weight value, a stable weight value can be determined. However, the absolute value of the stable weight value determined in this manner is not accurate.
- The taring range is specified to the device type.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point.
- The stored tare weight value is sent in the unit set

## **Examples**

| T | TI           | Tare immediately                                          |
|---|--------------|-----------------------------------------------------------|
| 1 | TI_D117.57_g | The tare memory holds a non-stable (dynamic) weight value |

#### See also



## **Description**

Tare or zero the balance, depending on the current load (like a combined tare/zero button).

## **Syntax**

## Command

| ſ | Ψ7. | Tare or zero the balance. |
|---|-----|---------------------------|
|   | 12  | Tale of Zelo the balance. |

## Responses

| TZ_A_«TareOrZero»[_«TareWeightValue»_«Unit»] | Balance tared or zeroed, depending on    |
|----------------------------------------------|------------------------------------------|
|                                              | current load. If tared, the new tare     |
|                                              | value is being sent as parameter.        |
| TZ_I                                         | Command understood but currently         |
|                                              | not executable (device is currently      |
|                                              | executing another command, e.g. zero     |
|                                              | setting, or timeout as stability was not |
|                                              | reached).                                |
| TZ_L                                         | Command understood but not execut-       |
|                                              | able (incorrect parameter).              |
| TZ_+                                         | Upper limits exceeded.                   |
| TZ                                           | Lower limits exceeded.                   |

#### Parameters / Return values

| Name            | Туре   | Values | Meaning                             |
|-----------------|--------|--------|-------------------------------------|
| TareOrZero      | string | T      | Tare operation executed             |
|                 |        | Z      | Zero operation executed             |
| TareWeightValue | float  |        | Tare weight value (only when tared) |
| Unit            | string |        | Currently displayed unit            |

## **Examples**

| ¥        | TZ     | Tare or zero.                          |
|----------|--------|----------------------------------------|
| <b>↑</b> | TZ_A_Z | Balance zeroed, tare value is cleared. |

| ¥ | TZ            | Tare or zero.                                                 |
|---|---------------|---------------------------------------------------------------|
| 1 | TA_AT100.00_g | Balance tared, the device has a value of 100.00 g in the tare |
|   |               | memory                                                        |

#### See also

| <b>→</b> | T - Tare               |
|----------|------------------------|
| <b>→</b> | Z - Zero               |
| <b>→</b> | TAC - Clear tare value |

# U - Query / set display and host unit

#### **Description**

This command retrieves or sets both the display and the host unit.

The display unit is the unit displayed in the display of the indicator.

The *host unit* is the unit used to send weighing values to the *host* (remote device / computer).

#### **Syntax**

#### Command

| U              | Query the current display unit.        |
|----------------|----------------------------------------|
| U_«UnitSymbol» | Set the current display and host unit. |

#### Responses

| U_A_ <i>«UnitSymbol»</i> | Returns the currently set display unit symbol.       |
|--------------------------|------------------------------------------------------|
| U_A                      | Unit successfully set.                               |
| U_L                      | Unit symbol invalid or required factors not set (see |
|                          | below).                                              |

#### Parameters / Return values

| Name       | Type   | Values      | Meaning                    |
|------------|--------|-------------|----------------------------|
| UnitSymbol | string | see [Units] | Symbol of the unit to set. |

#### **Comments**

• For certain units (e.g. percent, pieces, free factor, ...), before using this command, the corresponding factor has to be set using KCP commands or the balance keyboard.

#### **Examples**

|                 | •      |                                                                |
|-----------------|--------|----------------------------------------------------------------|
| 4               | U      | Query unit                                                     |
| <b>↑</b>        | U_A_g  | The current unit is gram (g).                                  |
| <b>↑</b>        | U_A_kg | The current unit is kilogram (kg).                             |
|                 |        |                                                                |
| ¥               | u_g    | Set the units to gram (g).                                     |
| <b>↑</b>        | U_A    | The unit is set now.                                           |
|                 |        |                                                                |
| $\mathbf{\Psi}$ | U_%    | Set the unit to percent (%).                                   |
| 1               | U_I    | Invalid action, because the weight of 100% was not set before. |

### Z - Zero (after stability)

#### **Description**

Use  ${\bf z}$  to set a new zero; all weight values (including the tare weight) will be measured relative to this zero. After zeroing has taken place, the following values apply: tare weight = 0; net weight (= gross weight) = 0.

### **Syntax**

#### Command

| Ζ | Zero the device. |
|---|------------------|
|   |                  |

#### Responses

| Z_A | Zero setting successfully performed. Gross, net and tare = 0.                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z_I | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| Z_+ | Upper limit of zero setting range exceeded.                                                                                                            |
| Z   | Lower limit of zero setting range exceeded.                                                                                                            |

#### **Comments**

- The tare memory is cleared after zero setting.
- The zero point determined during switching on is not influenced by this command, the measurement ranges remain unchanged.
- The duration of the timeout depends on the device type.

#### **Examples**

| Ψ | Z   | Zero                   |
|---|-----|------------------------|
| 1 | Z_A | Zero setting performed |

### ZI - Zero immediately

### **Description**

Use  ${\tt ZI}$  to set a new zero immediately, regardless of device stability. All weight values (including the tare weight) will be measured relative to this zero. After zeroing has taken place, the following values apply: tare weight = 0; net weight (= gross weight) = 0.

### **Syntax**

#### Command

| ZI | Zero the device immediately regardless the |
|----|--------------------------------------------|
|    | stability of device                        |

#### Responses

| ZI_D | Re-zero performed under non-stable (dynamic) conditions.                                                      |
|------|---------------------------------------------------------------------------------------------------------------|
| ZI_S | Re-zero performed under stable conditions.                                                                    |
| ZI_I | Command understood but currently not executable (device is currently executing another command, e.g. taring). |
| ZI_+ | Upper limit of zero setting range exceeded.                                                                   |
| ZI   | Lower limit of zero setting range exceeded.                                                                   |

### **Comments**

- The tare memory is cleared after zero setting.
- This command is not supported by approved devices.
- The zero point determined during switching on is not influenced by this command, the measurement ranges remain unchanged.

### **Examples**

| ¥        | ZI   | Zero immediately                                        |
|----------|------|---------------------------------------------------------|
| <b>↑</b> | ZI_D | Re-zero performed under non-stable (dynamic) conditions |

# 6 KCP commands – category "Weighing Advanced" (level 1)

The commands from Level 1 are available for all more advanced weighing instruments.

| IBRL  | List of balance range information                    |
|-------|------------------------------------------------------|
| IBRT  | Query balance ranges type                            |
| IVERS | Query/set verification state                         |
| SR    | Send weight value on weight change (send and repeat) |
| TA    | Query/preset tare weight value                       |
| TAI   | Query/preset (internal) tare weight value            |
| TAC   | Clear tare value                                     |

# IBRL / BalanceRangesList – List of balance range information

# Description

Query balance range information.

### **Syntax**

### Command

| Ī | IBRL | Query balance range information. |
|---|------|----------------------------------|
| L |      | Quely balance range information. |

### Responses

| <pre>IBRL_B_«RangeNr»_«Max»_«Unit»_«d»_«Unit» [_«Min»_</pre>                      | Information (if multiple).                 | about     | first     | range     |
|-----------------------------------------------------------------------------------|--------------------------------------------|-----------|-----------|-----------|
| <pre>IBRL_B_«RangeNr»_«Max»_«Unit»_«d»_«Unit» [_«Min»_ «Unit»_ «e» _«Unit»]</pre> | Information (if multiple).                 | about     | second    | range     |
| <pre>IBRL_A_«RangeNr»_«Max»_«Unit»_«d»_«Unit» [_«Min» _«Unit» _«e» _«Unit»]</pre> | Information al<br>(Min and e ar<br>fyable) |           | _         | not veri- |
| IBRL_I                                                                            | Command un executable.                     | nderstood | but curre | ntly not  |

### Parameters / Return values

| Name    | Туре   | Values    | Meaning                           |
|---------|--------|-----------|-----------------------------------|
| RangeNr | float  | 0,1,2,3,  | Number of the range               |
| Max     | float  |           | Max (capacity of this range)      |
| d       | float  |           | d (readout)                       |
| Min     | float  |           | Min (minimum verification value)  |
| е       | float  |           | e (verification interval)         |
| Unit    | string | see Units | Unit for the corresponding value. |

# IBRT - Query balance ranges type

### **Description**

Query the type of the balance ranges. This defines the way, the balance switches between ranges (if multiple).

### **Syntax**

#### Command

| IBRT | Query balance range type.       |
|------|---------------------------------|
|      | a diet y watantee tan ige type: |

### Responses

| <pre>IBRT_A_«BalanceRangeType»</pre> | Answer with balance range type. |
|--------------------------------------|---------------------------------|
|--------------------------------------|---------------------------------|

### Parameters / Return values

| Name             | Type   | Values | Meaning        |
|------------------|--------|--------|----------------|
| BalanceRangeType | string | SR     | Single range   |
|                  |        | MR     | Multi range    |
|                  |        | FR     | Floating range |

# IVERS - Query/set verification state

### **Description**

Query or set current state of verification.

### **Syntax**

### Command

| IVERS                     | Query current verification state. |
|---------------------------|-----------------------------------|
| IVERS_«VerificationState» | Set current verification state.   |

### Responses

| IVERS_A_«VerificationState» | Current verification state.                                                                                                                            |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| IVERS_A                     | Verification state set successfully.                                                                                                                   |
| IVERS_I                     | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| IVERS_L                     | Command understood but not executable (incorrect parameter.                                                                                            |

### Parameters / Return values

| Name              | Type | Values | Meaning                                            |
|-------------------|------|--------|----------------------------------------------------|
| VerificationState | bool | 0      | not in verified mode or no type approval / verifi- |
|                   |      |        | cation not possible.                               |
|                   |      | 1      | in verified mode                                   |

### SR - Send weight value on weight change (send and repeat)

#### **Description**

Use SR to send the current weight values following a predefined minimum change in weight and on a continuous basis. The weight value is sent, along with the unit.

#### Command

| SR                       | Send the current stable weight value and then continuously after every weight change. If no preset value is entered, the weight change must be at least 12.5% of the last stable weight value, minimum = 30 digit.             |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SR_«PresentValue»_«Unit» | Send the current stable weight value and then continuously after every weight change greater or equal to the preset value a non-stable (dynamic) value followed by the next stable value, range = 1 digit to maximal capacity. |

#### Responses

| S_S_«WeightValue»_«Unit» | Current, stable weight value in unit set, 1 <sup>st</sup> weight change.                                                                                     |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S_D_«WeightValue»_«Unit» | Dynamic weight value in unit set.                                                                                                                            |
| S_S_«WeightValue»_«Unit» | Next stable weight value in unit set.                                                                                                                        |
| S_I                      | Command understood but currently not executable (device is currently executing another command, e.g. zero setting, or timeout as stability was not reached). |
| S_L                      | Command understood but not executable (incorrect parameter).                                                                                                 |
| S_+                      | Device in overload range.                                                                                                                                    |
| S                        | Device in underload range.                                                                                                                                   |
| S_S_«ErrorCode»          | Code of error occurred                                                                                                                                       |

#### Parameters / Return values

| Name        | Туре   | Values | Meaning                              |
|-------------|--------|--------|--------------------------------------|
| WeightValue | float  |        | Weight value                         |
| Unit        | string |        | Unit, only available units permitted |
| ErrorCode   | string |        | Code of error occurred               |

#### **Comments**

- SR is overwritten by the commands S, SI, @ and hardware break and hence cancelled.
- If, following a non-stable (dynamic) weight value, stability has not been reached within the timeout interval, the response S\_I is sent and then a non-stable weight value. Timeout then starts again from the beginning.
- The preset value can be entered in any by the device accepted unit.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point.

# **Examples**

| Ψ        | SR_10.00_g  | Send the current stable weight value followed by every load change of 10 g |
|----------|-------------|----------------------------------------------------------------------------|
| <b>↑</b> | S_S100.00_g | Device stable                                                              |
|          | S_D115.23_g | 100.00 g loaded                                                            |
| <b>1</b> | S_S200.00_g | Device again stable                                                        |

# See also

| <b>→</b> | S - Send stable weight value                   |
|----------|------------------------------------------------|
| <b>→</b> | SI - Send weight value immediately             |
| <b>→</b> | SIR - Send weight value immediately and repeat |

### **Description**

Use  $\ensuremath{\mathbb{T}}\xspace\ensuremath{\mathbb{T}}\xspace$  to query the current tare value or preset a known tare value.

#### Command

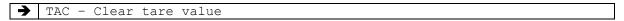
| TA                           | Query of the current tare weight value (rounded). |
|------------------------------|---------------------------------------------------|
| TA_«TarePresentValue»_«Unit» | Preset of a tare value.                           |

#### Responses

| TA_A_«TareWeightValue»_«Unit» | Query current tare weight value in tare memory, in unit set.                                                                                                 |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TA_I                          | Command understood but currently not executable (device is currently executing another command, e.g. zero setting, or timeout as stability was not reached). |
| TA_L                          | Command understood but not executable (incorrect parameter).                                                                                                 |

#### Parameters / Return values

| Name            | Type   | Values | Meaning                   |
|-----------------|--------|--------|---------------------------|
| TareWeightValue | float  |        | Rounded tare weight value |
| Unit            | string |        | Currently displayed unit  |


#### **Comments**

- The tare memory will be overwritten by the preset tare weight value.
- The inputted tare value will be automatically rounded by the device to the current readability.
- The taring range is specified to the device type.
- The weight value is formatted as a right aligned string with 10 characters including the decimal point.

### **Examples**

| ¥        | TA_100.00_g  | Preset a tare weight of 100 g                  |
|----------|--------------|------------------------------------------------|
| <b>1</b> | TA_A100.00_g | The device has a value of 100.00 g in the tare |
|          |              | memory                                         |

#### See also



### TAI - Query/preset tare weight value (internal, not rounded)

#### **Description**

Use TAI to query the current, unrounded tare value or preset a known exact tare value.

#### Command

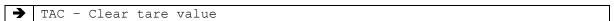
| TAI |                             | Query of the current tare weight value in the internal resolution (not rounded). |
|-----|-----------------------------|----------------------------------------------------------------------------------|
| TAI | «TarePresentValue» _ «Unit» | Preset of a tare value.                                                          |

#### Responses

| TAI_A_«TareWeightValue»_«Unit» | Query current tare weight value in tare memory, in unit set.                                                                                                 |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TAI_I                          | Command understood but currently not executable (device is currently executing another command, e.g. zero setting, or timeout as stability was not reached). |
| TAI_L                          | Command understood but not executable (incorrect parameter).                                                                                                 |

#### Parameters / Return values

| Name            | Туре   | Values | Meaning                  |
|-----------------|--------|--------|--------------------------|
| TareWeightValue | float  |        | Exact tare weight value  |
| Unit            | string |        | Currently displayed unit |


### **Comments**

- The tare memory will be overwritten by the preset tare weight value.
- The inputted tare value will **not** be rounded to the current readability.
- The internal resolution and taring range is specified to the device type. Typically, the internal resolution is 5-10 times higher than the resolution of the TA command.

#### **Examples**

| Ψ        | TAI_100.123_g   | Preset a tare weight of 100.123 g (even when d=0.01g). |
|----------|-----------------|--------------------------------------------------------|
| <b>↑</b> | TAI_A_100.123_g | The device has a value of 100.123 g in the tare        |
|          |                 | memory                                                 |

#### See also



# **Description**

Use  ${\tt TAC}$  to clear the tare memory.

### Command

| TAC | Clear tare value. |
|-----|-------------------|
|     |                   |

### Responses

| TAC_A | Tare value cleared, 0 is in the tare memory.     |
|-------|--------------------------------------------------|
| TAC_I | Command understood but currently not executable  |
|       | (device is currently executing another command,  |
|       | e.g. zero setting).                              |
| TAC_L | Command understood but not executable (incorrect |
|       | parameter).                                      |

# **Examples**

| Ψ        | TAC   | Clear tare value                            |
|----------|-------|---------------------------------------------|
| <b>↑</b> | TAC_A | Tare value cleared, 0 is in the tare memory |

### See also

| <b>→</b> | T - Tare                                    |
|----------|---------------------------------------------|
| <b>→</b> | TI - Tare immediately                       |
| <b>→</b> | TA - Query/preset tare weight value         |
| <b>→</b> | TC - Tare or tare immediately after timeout |

# 7 KCP commands – category "Weighing Adjustment" (level 2)

These commands allow to setup and adjust ("calibrate") a weighing device.

| С3   | Start adjustment with internal weight            |  |
|------|--------------------------------------------------|--|
| GA   | Query / set gravity value of place of adjustment |  |
| GU   | Query / set gravity value of place of use        |  |
| I54  | External adjustment loads                        |  |
| JAGZ | Gain adjustment – Zero point                     |  |
| JAGL | Gain adjustment – At load                        |  |
| JALZ | Linearization adjustment – Zero point            |  |
| JALL | Linearization adjustment – At load               |  |
| JAS  | Save balance adjustment                          |  |
| JDL  | Query / set linearization points                 |  |
| JDP  | Query / set linearization correction point       |  |
| JDV  | Query / set linearization correction value       |  |
| M19  | Query/set adjustment weight (with error)         |  |

### C3 - Start adjustment with internal weight

### **Description**

You can use C3 to start an internal adjustment procedure.

### **Syntax**

#### Command

|--|

### **First Responses**

| C3_B | The adjustment procedure has been started. Wait for second response.                                        |
|------|-------------------------------------------------------------------------------------------------------------|
| C3_I | Adjustment cannot be performed at present as another operation is taking place. No second response follows. |
| C3_L | Adjustment operation not possible (e.g. no internal weight). No second response follows.                    |

#### **Further Responses**

| C3_A | Adjustment has been completed successfully.       |
|------|---------------------------------------------------|
| C3_I | The adjustment was aborted as, e.g. stability not |
|      | attained or the procedure was aborted with the C  |
|      | key.                                              |

#### **Comments**

 Commands sent to the balance during the adjustment operation may not processed and responded to in the appropriate manner until the adjustment is at an end.

### **Examples**

| ¥        | C3   | Start internal adjustment. |
|----------|------|----------------------------|
| <b>↑</b> | C3_B | Started.                   |
| <b>↑</b> | C3_A | Completed successfully.    |

### GA -Query / set gravity value of place of adjustment

#### **Description**

Use this command to query or set the gravity value of the place of adjustment.

#### **Syntax**

#### Command

| GA                | Query the gravity value of adjustment. |
|-------------------|----------------------------------------|
| GA_«GravityValue» | Set the gravity value of adjustment.   |

#### Responses

| GA_A_ <i>«GravityValue»</i> | Gravity value of adjustment.                                                                                                             |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| GA_A                        | Command understood and executed successfully                                                                                             |
| GA_I                        | Command understood but currently not executable (device is currently executing another command, e.g. gain adjustment was not completed). |
| GA_L                        | Command understood but not executable (incorrect parameter).                                                                             |

#### Parameters / Return values

| Name         | Type  | Values | Meaning        |
|--------------|-------|--------|----------------|
| GravityValue | float |        | Gravity value. |

#### **Comments**

- After the balance adjustment, both the gravity value of adjustment and the gravity value of place of use will be set to nominal value 9.80665 m/s².
- Once either the gravity value of adjustment or the gravity value of place of use is modified, all the correction points set by the JDPx command will be cleared.

#### **Examples**

| Ψ        | GA             | Query the gravity value of adjustment.       |
|----------|----------------|----------------------------------------------|
| <b>1</b> | GA_A_9.8150000 | Gravity value of adjustment is 9.8150000.    |
|          |                |                                              |
| lack     | GA_9.79        | Set the gravity value of adjustment to 9.79. |
| <b>↑</b> | GA_A           | Command accepted.                            |

#### See also

→ GU - Query / set the gravity value of place of use

### GU -Query / set gravity value of place of use

### **Description**

Use this command to query or set gravity value of place of use.

#### **Syntax**

#### Command

| GU                        | Query the gravity value of place of use. |
|---------------------------|------------------------------------------|
| GU_ <i>«GravityValue»</i> | Set the gravity value of place of use.   |

#### Responses

| GU_A_ <i>«GravityValue»</i> | Gravity value of place of use.                                                                                                           |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| GU_A                        | Command understood and executed successfully                                                                                             |
| GU_I                        | Command understood but currently not executable (device is currently executing another command, e.g. gain adjustment was not completed). |
| GU_L                        | Command understood but not executable (incorrect parameter).                                                                             |

#### Parameters / Return values

| Name         | Туре  | Values | Meaning        |
|--------------|-------|--------|----------------|
| GravityValue | float |        | Gravity value. |

#### **Comments**

- After the balance adjustment, both the gravity value of adjustment and the gravity value of place of use will be set to nominal value 9.80665.
- Once either the gravity value of adjustment or the gravity value of place of use is modified, all the correction points set by the JDPx command will be cleared.

#### **Examples**

| Ψ        | GU             | Query the gravity value of place of use.       |
|----------|----------------|------------------------------------------------|
| <b>1</b> | GU_A_9.8150000 | Gravity value of place of use is 9.8150000.    |
|          |                |                                                |
| lack     | GU_9.79        | Set the gravity value of place of use to 9.79. |
| <b>1</b> | GU_A           | Command accepted.                              |

#### See also

→ GA - Query / set the gravity value of adjustment

# 154 – External adjustment loads

# **Description**

This command lists the available loads for external adjustment.

### **Syntax**

### Command

| Ī | T54 | Query list of adjustment loads.   |
|---|-----|-----------------------------------|
| L | 101 | Query list of adjustifient loads. |

### Responses

| I54_A_«Min»_«Max»_«Increment»_«Unit»    | Adjustment loads are between "Min" and |
|-----------------------------------------|----------------------------------------|
|                                         | "Max", with increments of "increment". |
| I54_B_«Load <sub>1</sub> »_«Unit»       | Adjustment loads are the listed loads  |
| I54_B_ <i>«Load<sub>2</sub>»_«Unit»</i> | (1 to n).                              |
|                                         |                                        |
| I54_A_ <i>«Load<sub>n</sub>»_«Unit»</i> |                                        |

### Parameters / Return values

| Name      | Type  | Values    | Meaning                                       |
|-----------|-------|-----------|-----------------------------------------------|
| Min       | float |           | Smallest load to use for external adjustment. |
| Max       | float |           | Biggest load to use for external adjustment.  |
| Increment | float |           | Load increment between Min and Max.           |
| Unit      | enum  | see Units | Unit in which the previous values are given.  |

# **Examples**

| 4        | I54                         | Query.                                            |
|----------|-----------------------------|---------------------------------------------------|
| <b>↑</b> | I54_A_1000.0_3000.0_750.0_g | In the case of external adjustment, the loads for |
|          |                             | selection are 1000 g, 1750 g, 2500 g and 3000 g.  |

# JAGZ - Gain adjustment - Zero point

### **Description**

Use  ${\tt JAGZ}$  to set the zero adjustment point of the balance.

### **Syntax**

#### Command

| JAGZ Set zero offset of the balance. |
|--------------------------------------|
|--------------------------------------|

### Responses

| JAGZ_A_«AdjustmentWeight»_«Unit» | Zero offset setting successfully performed and proceeds to gain adjustment.                                                                            |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| JAGZ_I                           | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| JAGZ_L                           | Command understood but not executable (incorrect parameter).                                                                                           |

#### Comments

• The commands,  ${\tt JAGZ}$ ,  ${\tt JAGL}$  and  ${\tt JS}$  are required to enter sequentially for completing the balance adjustment.

### **Examples**

| ¥        | JAGZ           | Set zero offset of the balance.             |
|----------|----------------|---------------------------------------------|
| <b>↑</b> | JAGZ_A20.00_kg | Zero offset setting successfully performed. |

#### See also

| <b>→</b> | JAGL - Set gain adjustment    |
|----------|-------------------------------|
| <b>→</b> | JAS - Save balance adjustment |

# JAGL - Gain adjustment - At load

### **Description**

Use  ${\tt JAGL}$  to set the gain adjustment at load of the balance.

Use JDA to set the adjustment weight.

# **Syntax**

### Command

| ou gamenaja and a de | JAGL | Set gain adjustment of the balance. |
|----------------------------------------------------|------|-------------------------------------|
|----------------------------------------------------|------|-------------------------------------|

### Responses

| JAGL_A | Gain adjustment setting successfully performed.        |
|--------|--------------------------------------------------------|
| JAGL_I | Command understood but currently not executable        |
|        | (device is currently executing another command,        |
|        | e.g. taring, or timeout as stability was not reached). |
| JAGL_L | Command understood but not executable (incorrect       |
|        | parameter).                                            |

# **Examples**

| ¥        | JAGL   | Set gain adjustment of the balance.             |
|----------|--------|-------------------------------------------------|
| <b>↑</b> | JAGL_A | Gain adjustment setting successfully performed. |

### See also

| →        | JAGZ - Set zero adjustment    |
|----------|-------------------------------|
| <b>→</b> | JAS - Save balance adjustment |

# JALZ - Start linearization adjustment - Zero point

### **Description**

Use  ${\tt JALZ}$  to start linearization and set the zero adjustment point of the balance.

### **Syntax**

#### Command

| JALZ Set zero offset of the balance. |
|--------------------------------------|
|--------------------------------------|

#### Responses

| JALZ_A_«LinearizationPoint»_«Unit» | Zero offset setting successfully performed and proceeds to first linearization point.                                                                  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| JALZ_I                             | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| JALZ_L                             | Command understood but not executable (incorrect parameter).                                                                                           |

#### Comments

• The commands, JALZ, JALL and JS are required to enter sequentially for completing the balance linearization.

### **Examples**

| 4 | JALZ           | Start linearization.                            |
|---|----------------|-------------------------------------------------|
| 1 | JALZ_A20.00_kg | Linearization successfully started (zero offset |
|   |                | stored), continue with load 20kg.               |

#### See also

| <b>→</b> | JAGL - Set gain adjustment    |
|----------|-------------------------------|
| <b>→</b> | JAS - Save balance adjustment |

# JALL - Set linearization adjustment

### **Description**

Use  ${\tt JALL}$  to set the gain adjustment of the balance.

### **Syntax**

#### Command

| JALL Set linearization/gain adjustment of the balance. |
|--------------------------------------------------------|
|--------------------------------------------------------|

### Responses

| JALL_B_«LinearizationPoint»_«Unit» | Linearization/gain adjustment setting successfully performed and proceeds to next point. |
|------------------------------------|------------------------------------------------------------------------------------------|
|                                    | ' '                                                                                      |
| JALL_A                             | Balance adjustment setting successfully performed.                                       |
| JALL_I                             | Command understood but currently not executable                                          |
|                                    | (device is currently executing another command,                                          |
|                                    | e.g. taring, or timeout as stability was not reached).                                   |

### **Comments**

• The commands,  $\tt JZ$ ,  $\tt JL$  and  $\tt JS$  are required to enter sequentially for completing the balance adjustment.

# **Examples**

| 4        | JALL           | Set linearization/gain adjustment of the balance.  |
|----------|----------------|----------------------------------------------------|
| <b>1</b> | JALL_B20.00_kg | Linearization adjustment setting successfully per- |
|          |                | formed and proceeds to next point 20.00 kg.        |
| <b>1</b> | JALL_B50.00_kg | Linearization adjustment setting successfully per- |
|          |                | formed and proceeds to next point 50.00 kg.        |
| <b>1</b> | JALL_A         | Balance adjustment setting successfully performed. |

### See also

| <b>→</b> | JALZ - Start linearization    |
|----------|-------------------------------|
| <b>→</b> | JAS - Save balance adjustment |

### JAS - Save balance adjustment

### **Description**

Use JAS to save the new balance adjustment settings in the permanent memory.

#### **Syntax**

#### Command

| JAS   Save the balance adjustment settings. |     | JAS | Save the balance adjustment settings. |
|---------------------------------------------|-----|-----|---------------------------------------|
|                                             | _ L |     |                                       |

### Responses

| JAS_A | Save balance adjustment settings successfully performed.                                                                                               |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| JAS_I | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| JAS_L | Command understood but not executable (incorrect parameter).                                                                                           |

#### Comments

- The commands, JALZ, JALL and JAS are required to enter sequentially for completing the balance adjustment.
- Once the balance adjustment is completed, all the correction points set by the JDPx command will be cleared.

### **Examples**

| ¥        | JAS   | Save balance adjustment settings.               |
|----------|-------|-------------------------------------------------|
| <b>↑</b> | JAS_A | Balance adjustment settings successfully saved. |

#### See also

| <b>→</b> | JAZL - Set zero linearization adjustment |
|----------|------------------------------------------|
| <b>→</b> | JALL - Set linearization adjustment      |

### JDL -Query / set linearization point

#### **Description**

Use this command to query or set a linearization point.

#### **Syntax**

#### Command

| JDL_«pnr»                                        | Query the linearization point.                    |
|--------------------------------------------------|---------------------------------------------------|
| <pre>JDL_«pnr»_«LinearizationPoint»_«Unit»</pre> | Set the linearization point with unit, $x = 13$ . |

#### Responses

| <pre>JDL_A_«pnr»_«LinearizationPoint»_«Unit»</pre> | Linearization point value.                      |
|----------------------------------------------------|-------------------------------------------------|
| JDL_A_«pnr»                                        | Command understood and executed suc-            |
|                                                    | cessfully                                       |
| JDL_I                                              | Command understood but currently not executable |
|                                                    | (device is currently executing another command, |
|                                                    | e.g. gain adjustment was not completed).        |
| JDL_L                                              | Command understood but not executable           |
|                                                    | (incorrect                                      |
|                                                    | parameter).                                     |

#### Parameters / Return values

| Name               | Type   | Values             | Meaning                    |
|--------------------|--------|--------------------|----------------------------|
| pnr                | int    | 0 7                | Linearization point index  |
| LinearizationPoint | float  | < nominal capacity | Linearization point value. |
| Unit               | string |                    |                            |

#### **Comments**

- When nominal capacity and division are set by using the commands JDC and JDD, all linearization points will be initialized to zero.
- Setting a zero value means to clear that linearization point.
- When linearization process started, all valid linearization points will be sorted in ascending order.
- Any duplicated linearization points will be disregarded.
- · Zero and the capacity of the scale are linearization points by default.

### **Examples**

| ¥        | JDL_0           | Query the linearization point 1.   |
|----------|-----------------|------------------------------------|
| <b>↑</b> | JDL_0_A10.00_kg | Linearization point 1 is 10.00 kg. |
|          |                 |                                    |

| Ψ        | JDL_1_50 kg | Set linearization point 2 to 50 kg. |  |
|----------|-------------|-------------------------------------|--|
| <b>↑</b> | JDL_1_A     | Command accepted.                   |  |

#### See also

|          | JDC - Query / set nominal capacity  |
|----------|-------------------------------------|
| <b>→</b> | JDD - Query / set division          |
| <b>→</b> | JDO - Query / set overload capacity |

# JDPx -Query / set linearization correction point

### **Description**

Use this command to query or set a correction point, x = 0..7.

### **Syntax**

### Command

| JDPx                          | Query the correction point.                    |
|-------------------------------|------------------------------------------------|
| JDPx_«CorrectionPoint»_«Unit» | Set the correction point with unit, $x = 07$ . |

### Responses

| JDPx_A_«CorrectionPoint»_«Unit» | Correction point with unit.                                                                                                              |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| JDPx_A                          | Command understood and executed successfully                                                                                             |
| JDPx_I                          | Command understood but currently not executable (device is currently executing another command, e.g. gain adjustment was not completed). |
| JDPx_L                          | Command understood but not executable (incorrect parameter).                                                                             |

#### Parameters / Return values

| Name            | Type   | Values | Meaning           |
|-----------------|--------|--------|-------------------|
| CorrectionPoint | float  |        | Correction point. |
| Unit            | string |        |                   |

### Comments

The unit must be the same as in the JDC command.

### **Examples**

| Ψ        | JDP1           | Query the correction point 1.    |
|----------|----------------|----------------------------------|
| <b>1</b> | JDP1_A10.00_kg | Correction point 1 is 10.00 kg.  |
| ¥        |                | Set correction point 2 to 50 kg. |
| <b>1</b> | JDP2_A         | Command accepted.                |

#### See also

→ JDVx - Query / set correction value

# JDVx -Query / set linearization correction value

### **Description**

Use this command to query or set the correction value of a correction point, x = 0..7.

### **Syntax**

#### Command

| JDVx                          | Query the correction value.                    |
|-------------------------------|------------------------------------------------|
| JDVx_«CorrectionValue»_«Unit» | Set the correction value with unit, $x = 07$ . |

#### Responses

| JDVx_A_«CorrectionValue»_«Unit» | Correction value with unit.                                                                                                              |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| JDVx_A                          | Command understood and executed successfully                                                                                             |
| JDVx_I                          | Command understood but currently not executable (device is currently executing another command, e.g. gain adjustment was not completed). |
| JDVx_L                          | Command understood but not executable (incorrect parameter).                                                                             |

#### Parameters / Return values

| Name            | Туре   | Values | Meaning           |
|-----------------|--------|--------|-------------------|
| CorrectionValue | float  |        | Correction value. |
| Unit            | string |        |                   |

### **Comments**

- The corresponding correction point must be set before setting the correction value.
- The unit must be the same as in the JDC command.

#### **Examples**

| 4        | JDV1          | Query the correction point 1.       |
|----------|---------------|-------------------------------------|
| <b>1</b> | JDV1_A0.03_kg | Correction point 1 is 0.03 kg.      |
| ¥        | JDV20.01 kg   | Set correction point 2 to -0.01 kg. |
| <b>1</b> | JDV2_A        | Command accepted.                   |

### See also

# M19 - Query/set adjustment weight (with error)

### **Description**

You can use  ${\tt M19}$  to set the currently used external adjustment weight, or to query the current weight setting.

### **Syntax**

#### Command

| M19                                 | Query the current adjustment weight. |
|-------------------------------------|--------------------------------------|
| M19_ <i>«Value»</i> _ <i>«Unit»</i> | Set the adjustment weight.           |

### Responses

| M19_A_«Value»_«Unit» | Current adjustment weight.                                                                                                                             |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| M19_A                | Command understood and executed successfully.                                                                                                          |
| M19_I                | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| M19_L                | Command understood but not executable (incorrect parameter).                                                                                           |

#### Parameters / Return values

| Name  | Type   | Values | Meaning                                          |
|-------|--------|--------|--------------------------------------------------|
| Value | float  |        | Value of the adjustment weight, balance specific |
|       |        |        | limitation                                       |
| Unit  | string |        |                                                  |

# **Examples**

| ¥        | M19             | Query current adjustment weight.                   |
|----------|-----------------|----------------------------------------------------|
| <b>1</b> | M19_A_100.123_g | The current adjustment weight value is 100 g, with |
|          |                 | a deviation of 0.123 g.                            |

### See also

→ I54 - Query adjustment loads

# 8 KCP commands – category "Weighing Service"

These commands include internal commands for a weighing device.

| JDC  | Query / set nominal capacity    |
|------|---------------------------------|
| JDD  | Query / set division / readout  |
| JDO  | Query / set overload capacity   |
| JDA  | Query / set adjustment weight   |
| JDF  | Query / set filter settings     |
| SAD  | Send AD value                   |
| SADR | Send AD value and repeat        |
| ZINI | Query / set initial zero range  |
| ZMAN | Query / set manual zero range   |
| ZTRA | Query / set zero tracking range |

### **Description**

Use this command to query or set the nominal capacity.

### **Syntax**

#### Command

| JDC                        | Query the current nominal capacity. |
|----------------------------|-------------------------------------|
| JDC_«CapacityValue»_«Unit» | Set the nominal capacity with unit. |

#### Responses

| JDC_A_«CapacityValue»_«Unit» | Current nominal capacity value.                                                                                                          |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| JDC_A                        | Command understood and executed successfully                                                                                             |
| JDC_I                        | Command understood but currently not executable (device is currently executing another command, e.g. gain adjustment was not completed). |
| JDC_L                        | Command understood but not executable (incorrect parameter).                                                                             |

#### Parameters / Return values

| Name          | Туре   | Values | Meaning                 |
|---------------|--------|--------|-------------------------|
| CapacityValue | float  |        | Nominal capacity value. |
| Unit          | string |        | Unit to be used         |

### **Comments**

- The two commands, JDC and JDD are required to enter sequentially for completing the setting of basic weighing parameters.
- The overload capacity is automatically set to nominal capacity plus 9d. Use JDO command to modify the overload capacity.

### **Examples**

| ¥        | JDC           | Query the current nominal capacity.       |
|----------|---------------|-------------------------------------------|
| <b>↑</b> | JDC_A10.00_kg | The current nominal capacity is 10.00 kg. |
|          |               |                                           |
| F        | IDC 50 kg     | Set pominal capacity to 50 kg             |

| ¥        | JDC_50_kg | Set nominal capacity to 50 kg.                 |
|----------|-----------|------------------------------------------------|
| <b>↑</b> | JDC_A     | Command accepted but division and overload ca- |
|          |           | pacity are not defined yet.                    |

#### See also

| <b>→</b> | JDD - Query / set division          |
|----------|-------------------------------------|
| <b>→</b> | JDO - Query / set overload capacity |

# JDD - Query / set division

### **Description**

Use this command to query or set the division.

### **Syntax**

### Command

| JDD                                         | Query the division.         |
|---------------------------------------------|-----------------------------|
| JDD_ <i>«DivisionValue»</i> _ <i>«Unit»</i> | Set the division with unit. |

### Responses

| JDD_A_«DivisionValue»_«Unit» | Current division.                                                                                                                        |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| JDD_A                        | Command understood and executed successfully.                                                                                            |
| JDD_I                        | Command understood but currently not executable (device is currently executing another command, e.g. gain adjustment was not completed). |
| JDD_L                        | Command understood but not executable (incorrect parameter).                                                                             |

#### Parameters / Return values

| Name          | Туре   | Values | Meaning         |
|---------------|--------|--------|-----------------|
| DivisionValue | float  |        | Division value. |
| Unit          | string |        |                 |

### Comments

- The two commands, JDC and JDD are required to enter sequentially for completing the setting
  of basic weighing parameters.
- The unit must be the same as in the JDC command.

### **Examples**

| Ψ        | JDD          | Query the current division.      |
|----------|--------------|----------------------------------|
| <b>1</b> | JDD_A0.01_kg | The current division is 0.01 kg. |
| lack     | JDD_0.02 kg  | Set the division to 0.02 kg.     |
| <b>↑</b> | JDD_A        | Command accepted.                |

### See also

| <b>→</b> | JDC - Query / set nominal capacity  |
|----------|-------------------------------------|
| <b>→</b> | JDO - Query / set overload capacity |

### **Description**

Use this command to query or set the overload capacity.

### **Syntax**

### Command

| JD0                           | Query the current overload capacity. |
|-------------------------------|--------------------------------------|
| JDO_ «OverloadValue» _ «Unit» | Set the overload capacity with unit. |

### Responses

| JDO_A_«OverloadValue»_«Unit» | Current overload capacity value.                                                                                                         |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| JDO_A                        | Command understood and executed successfully                                                                                             |
| JDO_I                        | Command understood but currently not executable (device is currently executing another command, e.g. gain adjustment was not completed). |
| JDO_L                        | Command understood but not executable (incorrect parameter).                                                                             |

### Parameters / Return values

| Name          | Type   | Values | Meaning                  |
|---------------|--------|--------|--------------------------|
| OverloadValue | float  |        | Overload capacity value. |
| Unit          | string |        |                          |

### Comments

The unit must be the same as in the JDC command.

### **Examples**

| 4        | JD0           | Query the current overload capacity.       |
|----------|---------------|--------------------------------------------|
| <b>↑</b> | JDO_A10.09_kg | The current overload capacity is 10.09 kg. |
|          |               |                                            |

| V        | JDO_51.5 kg | Set overload capacity to 51.50 kg. |
|----------|-------------|------------------------------------|
| <b>↑</b> | JDO_A       | Command accepted.                  |

### See also

| <b>→</b> | JDC - Query / set nominal capacity |
|----------|------------------------------------|
| <b>→</b> | JDD - Query / set division         |

# JDA - Query / set adjustment weight for gain adjustment

### **Description**

Use this command to query or set the adjustment weight for gain adjustment using the  ${\tt JAGZ}$  and  ${\tt JAGL}$  commands.

### **Syntax**

#### Command

| JDA                      | Query the current adjustment weight. |
|--------------------------|--------------------------------------|
| JDA_«WeightValue»_«Unit» | Set the overload capacity with unit. |

### Responses

| JDA_A_«WeightValue»_«Unit» | Current adjustment weight value.                                                                                                         |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| JDA_A                      | Command understood and executed successfully                                                                                             |
| JDA_I                      | Command understood but currently not executable (device is currently executing another command, e.g. gain adjustment was not completed). |
| JDA_L                      | Command understood but not executable (incorrect parameter).                                                                             |

#### Parameters / Return values

| Name        | Туре   | Values | Meaning                  |
|-------------|--------|--------|--------------------------|
| WeightValue | float  |        | Overload capacity value. |
| Unit        | string |        |                          |

#### **Comments**

- The unit must be the same as in the JDA command.
- After changing, the command JAS has to be executed.

### **Examples**

| 4        | JDA           | Query the current adjustment weight.       |
|----------|---------------|--------------------------------------------|
| 1        | JDA_A10.09_kg | The current adjustment weight is 10.09 kg. |
|          |               |                                            |
| ₩        | JDA_51.5 kg   | Set overload capacity to 51.50 kg.         |
| <b>A</b> | JDA A         | Command accepted.                          |

#### See also

| <b>→</b> | JDC - Query / set nominal capacity |  |  |
|----------|------------------------------------|--|--|
| <b>→</b> | JDD - Query / set division         |  |  |
| <b>→</b> | JAS - Save adjustment              |  |  |
|          |                                    |  |  |
| <b>→</b> | JAGZ - Gain adjustment - zero      |  |  |
| <b>→</b> | JAGL - Gain adjustment - load      |  |  |

# JDF - Query / set filter settings

### **Description**

Use this command to query or set the filter settings.

### **Syntax**

### Command

| JDF          | Query the current filter settings. |
|--------------|------------------------------------|
| JDF_«Filter» | Set the current filter settings.   |

### Responses

| JDF_A_ <i>«Filter»</i> | Current filter settings.                                                                                                                               |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| JDF_A                  | Set filter setting successfully performed.                                                                                                             |
| JDF_I                  | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| JDF_L                  | Command understood but not executable (incorrect parameter).                                                                                           |

### Parameters / Return values

| Name   | Туре  | Values  | Meaning                         |
|--------|-------|---------|---------------------------------|
| Filter | float | 0 - 100 | Filter level (0 fast, 100 slow) |

# **Examples**

| ¥        | JDF    | Send the current filter settings.                  |
|----------|--------|----------------------------------------------------|
| <b>↑</b> | JDF_30 | The current filter settings are 30.                |
|          |        |                                                    |
| <b>T</b> | JDF_30 | Set the current filter settings to 30.             |
| <b>^</b> | JDF A  | Set current filter settings successfully performed |

### SAD - Send current A/D converter internal value

### **Description**

Use SAD to send the current internal value of the A/D converter.

### **Syntax**

#### Command

| SAD Send the current AD value once. |  |
|-------------------------------------|--|
|-------------------------------------|--|

### Responses

| SAD_A_«AD Value»          | AD value                                         |
|---------------------------|--------------------------------------------------|
| SAD_I                     | Command understood but currently not executable  |
|                           | (device is currently executing another command). |
| SAD_S_ <i>«ErrorCode»</i> | Code of error occurred                           |

#### Parameters / Return values

| Name      | Туре   | Values | Meaning                |
|-----------|--------|--------|------------------------|
| AD Value  | int    |        | AD value               |
| ErrorCode | string |        | Code of error occurred |

#### **Comments**

• The AD value is formatted as described in the comments of the S command.

### **Examples**

| 4        | SAD        | Send current AD value           |
|----------|------------|---------------------------------|
| <b>↑</b> | SAD_A12907 | The AD value is currently 12907 |

# SADR - Send current A/D converter internal value and repeat

### **Description**

Use SADR to send the A/D converter internal value, on a continuous basis.

### **Syntax**

#### Command

| SADR                              | Send the AD values repeatedly. The default time between transmissions is device dependent (typically around 15 Hz). |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------|
| SADR_«TimeMsBetweenTransmissions» | As above, setting the time between transmissions explicitly (in milliseconds).                                      |

### Responses

| SAD_A_«AD Value»          | AD value                                         |
|---------------------------|--------------------------------------------------|
| SAD_I                     | Command understood but currently not executable  |
|                           | (device is currently executing another command). |
| SAD_S_ <i>«ErrorCode»</i> | Code of error occurred                           |

#### Parameters / Return values

| Name      | Type   | Values | Meaning                |
|-----------|--------|--------|------------------------|
| AD Value  | int    |        | AD value               |
| ErrorCode | string |        | Code of error occurred |

### **Comments**

- SADR is overwritten by the commands SAD, @ and hardware break and hence cancelled.
- The AD value is formatted as described in the comments of the S command.

### **Examples**

| 4        | SADR       | Send AD values at intervals             |
|----------|------------|-----------------------------------------|
| <b>↑</b> | SAD_A12907 | The device sends AD values at intervals |
| <b>↑</b> | SAD_A12908 |                                         |
| <b>↑</b> | SAD_A12909 |                                         |
| <b>↑</b> | SAD_A12909 |                                         |
| <b>↑</b> | SAD_A12987 |                                         |
| <b>↑</b> | SAD        |                                         |

# ZINI - Query / set initial zero range

### **Description**

Use this command to query or set initial zero ranges.

### **Syntax**

### Command

| ZINI                 | Query initial zero range.           |
|----------------------|-------------------------------------|
| ZINI_«Lower»_«Upper» | Set initial zero lower/upper range. |

### Responses

| ZINI_A_«Lower»_«Upper» | Current initial zero lower and upper ranges.                                                                                                           |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZINI_A                 | Command successfully performed.                                                                                                                        |
| ZINI_I                 | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| ZINI_L                 | Command understood but not executable (incorrect parameter).                                                                                           |

### Parameters / Return values

| Name        | Туре  | Values | Meaning                                     |
|-------------|-------|--------|---------------------------------------------|
| Lower/Upper | float | >= 0   | Initial zero range in % of nominal capacity |

### **Comments**

• If Upper is missed, lower and upper ranges are set symmetrically below and above zero.

### **Examples**

| Ψ        | ZINI             | Query initial zero ranges.                                                                                       |
|----------|------------------|------------------------------------------------------------------------------------------------------------------|
| <b>↑</b> | ZINI_A_15.0_20.0 | Lower initial zero range is 15.0% of nominal capacity and upper initial zero range is 20.0% of nominal capacity. |
|          |                  |                                                                                                                  |
| <b>\</b> | ZINI_10          | Set both lower and upper initial zero ranges to 10% of nominal capacity.                                         |
| <b>^</b> | ZINI A           | Command successfully performed.                                                                                  |

### **Description**

Use this command to query or set manual zero ranges.

### **Syntax**

### Command

| ZMAN                 | Query manual zero range.           |
|----------------------|------------------------------------|
| ZMAN_«Lower»_«Upper» | Set manual zero lower/upper range. |

### Responses

| ZMAN_A_«Lower»_«Upper» | Current manual zero lower and upper ranges.                                                                                                            |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZMAN_A                 | Command successfully performed.                                                                                                                        |
| ZMAN_I                 | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| ZMAN_L                 | Command understood but not executable (incorrect parameter).                                                                                           |

### Parameters / Return values

| Name        | Type  | Values | Meaning                                    |
|-------------|-------|--------|--------------------------------------------|
| Lower/Upper | float | >= 0   | Manual zero range in % of nominal capacity |

### **Comments**

• If upper is missed, lower and upper ranges are set symmetrically below and above zero.

### **Examples**

| Ψ        | ZMAN             | Query manual zero ranges.                                                                                      |
|----------|------------------|----------------------------------------------------------------------------------------------------------------|
| <b>↑</b> | ZMAN_A_15.0_20.0 | Lower manual zero range is 15.0% of nominal capacity and upper manual zero range is 20.0% of nominal capacity. |
| <b>4</b> | ZMAN_10          | Set both lower and upper manual zero ranges to 10% of nominal capacity.                                        |
| <b>1</b> | ZMAN_A           | Command successfully performed.                                                                                |

# ZTRA - Query / set zero tracking range

# **Description**

Use this command to query or set zero tracking ranges.

### **Syntax**

### Command

| ZTRA                                  | Query zero tracking range.           |
|---------------------------------------|--------------------------------------|
| ZTRA_ <i>«Lower»</i> _ <i>«Upper»</i> | Set zero tracking lower/upper range. |

### Responses

| ZTRA_A_«Lower»_«Upper» | Current zero tracking lower and upper ranges.                                                                                                          |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZTRA_A                 | Command successfully performed.                                                                                                                        |
| ZTRA_I                 | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| ZTRA_L                 | Command understood but not executable (incorrect parameter).                                                                                           |

#### Parameters / Return values

| Name        | Туре  | Values | Meaning                                      |
|-------------|-------|--------|----------------------------------------------|
| Lower/Upper | float | >= 0   | Zero tracking range in % of nominal capacity |

#### **Comments**

- If Upper is missed, lower and upper ranges are set symmetrically below and above zero.
- To disable zero tracking, set ranges to zero.

### **Examples**

| Ψ        | ZTRA             | Query zero tracking ranges.                                                                                        |
|----------|------------------|--------------------------------------------------------------------------------------------------------------------|
| <b>↑</b> | ZTRA_A_15.0_20.0 | Lower zero tracking range is 15.0% of nominal capacity and upper zero tracking range is 20.0% of nominal capacity. |
|          |                  |                                                                                                                    |
| •        | ZTRA_10          | Set both lower and upper zero tracking ranges to 10% of nominal capacity.                                          |
| <b>1</b> | ZTRA_A           | Command successfully performed.                                                                                    |

# 9 KCP commands – category "Sensors" (level 2)

| SENSL | Query list of sensors in the device |
|-------|-------------------------------------|
| SENSI | Query detailed sensor information   |
| SENSQ | Query current sensor value          |

# SENSL / SensorList - Query list of sensors in the device

# **Description**

Lists the available sensors and basic information about each sensor.

### **Syntax**

### Command

| SENS |  |
|------|--|
|      |  |
|      |  |
|      |  |

### Responses

| SENSL_B_«ID»_«Type»_«Description»_«CurrentValue»_«Unit» |                |  |
|---------------------------------------------------------|----------------|--|
| SENSL_B_«ID»_«Type»_«Description»_«CurrentValue»_«Unit» | Second sensor. |  |
| ODNOL A TRUE Was a Description of Comments Included     | Lastanas       |  |
| SENSL_A_«ID»_«Type»_«Description»_«CurrentValue»_«Unit» | Last sensor.   |  |
| SENSL_L                                                 | No sensors.    |  |

### Parameters / Return values

| Name         | Туре   | Values | Meaning                                                                                                                                             |  |
|--------------|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ID           | int    | 0, 1,  | Sensor unique ID                                                                                                                                    |  |
| Type         | string | T      | Temperature sensor                                                                                                                                  |  |
|              |        | Н      | Relative humidity sensor                                                                                                                            |  |
|              |        | Р      | Air pressure sensor                                                                                                                                 |  |
|              |        | BL     | Bubble level status sensor (ok, not ok)                                                                                                             |  |
|              |        | BLPos  | Bubble level position (X, Y)                                                                                                                        |  |
|              |        | DL     | Door limit switch                                                                                                                                   |  |
| Description  | string |        | Internal description of the sensor, e.g. LoadCellTemp, CaseTemp, EnvTemp, EnvHumi, EnvPres, BubbleLevelStatus, BubbleLevelPosition, DoorLimitSwitch |  |
| CurrentValue | float  |        | Current value of the sensor                                                                                                                         |  |
| Unit         | string |        | Unit of the value of the sensor                                                                                                                     |  |

# **Examples**

| ¥        | SENSL                            | Send a list of the available sensors. |
|----------|----------------------------------|---------------------------------------|
| <b>↑</b> | SENSL_B_0_T_EnvTemp_22.00_°C     | The current available sensor list.    |
|          | SENSL_B_1_H_EnvHumi_50.00_%      |                                       |
|          | SENSL_B_2_P_EnvPres_106545.00_Pa |                                       |
|          | SENSL_A_3_P_EnvPres_256512.00_Pa |                                       |

### See also

| ſ | <b>→</b> | SENSI - Query detailed sensor information |
|---|----------|-------------------------------------------|
| Ī | <b>→</b> | SENSQ - Query current sensor value        |

# SENSI / SensorInfo - Query detailed sensor information.

# **Description**

Queries detail information about a specific sensor.

### **Syntax**

### Command

| SENSI_«SensorID» |  |
|------------------|--|
|                  |  |

#### Responses

|    | <pre>ENSI_B_«SensorID»_«ParKey»_«ParValue»[_«ParValueUnit»] ENSI_B_«SensorID»_«ParKey»_«ParValue»[_«ParValueUnit»]</pre> |                     |
|----|--------------------------------------------------------------------------------------------------------------------------|---------------------|
|    | <br>ENSI_A_ <i>«SensorID»_«ParKey»_«ParValue»</i> [ <i>_«ParValueUnit»</i> ]                                             | <br>Last parameter. |
| SI | ENSI_L                                                                                                                   | No sensors.         |

#### Parameters / Return values

| Name         | Туре   | Values | Meaning                                                                       |
|--------------|--------|--------|-------------------------------------------------------------------------------|
| SensorID     | int    | 0, 1,  | Sensor unique ID                                                              |
| ParKey       | string |        | Name/internal key of the parameter. See comments for possible parameter keys. |
| ParValue     | -      |        | Current value of the parameter                                                |
| ParValueUnit | string |        | Unit of the value of the parameter, if applicable.                            |

# **Examples**

| V        | SENSI_1              | Query detailed information of sensor 1. |
|----------|----------------------|-----------------------------------------|
| <b>1</b> | SENSI_B_1_max_1000_N | Sensor max. capacity is 1000 N.         |
|          | SENSI_B_1_min_10_N   | Sensor min. load is 10 N.               |
|          |                      |                                         |
|          | SENSI_A_1_d_0.1_N    | Sensor readability is 0.1 N.            |

#### **Comments**

The following parameters are defined at the moment:

| Parameter name | Sensor types | Description                               |
|----------------|--------------|-------------------------------------------|
| max            | -            | Maximum capacity                          |
| min            | -            | Minimum load (relative uncertainty limit) |
| d              | -            | Readability                               |
| manufacturer   | -            | Manufacturer name                         |
| typenumber     | -            | Type number                               |

### See also

| • | <b>→</b> | SENSI - Query detailed sensor information |
|---|----------|-------------------------------------------|
|   | <b>*</b> | SENSQ - Query current sensor value        |

# SENSQ / SensorQuery – Query current sensor value.

# **Description**

Use this command to query a specific sensor value.

# **Syntax**

### Command

| SENSQ_«SensorID» | Query specific sensor value. |
|------------------|------------------------------|

### Responses

| SENSQ_A_«SensorValue»_«Unit» | Current sensor value in unit actually set under host unit.                                                                                             |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| SENSQ_I                      | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| SENSQ_L                      | Command understood but not executable (incorrect parameter).                                                                                           |

# Parameters / Return values

| Name        | Type    | Values   | Meaning                  |
|-------------|---------|----------|--------------------------|
| SensorID    | integer | 0, 1, 2, | Sensor ID                |
| SensorValue | float   |          | Sensor value             |
| Unit        | string  |          | Currently displayed unit |

# **Examples**

| Ψ        | SENSQ_0          | Send a sensor value from sensor 0    |
|----------|------------------|--------------------------------------|
| <b>↑</b> | SENSQ_A_22.00_°C | The current sensor value is 22.00 °C |

| T        | SENSQ_1         | Send a sensor value from sensor 1   |
|----------|-----------------|-------------------------------------|
| <b>^</b> | SENSQ_A_50.00_% | The current sensor value is 50.00 % |

# See also

| 7 | • | SENSL - Query list of sensors in the device |
|---|---|---------------------------------------------|
| 7 | • | SENSI - Query detailed sensor information   |

# SENSQR / SensorQueryRepeat - Query current sensor values and repeat.

### **Description**

Use this command to query a certain list of sensors at a regular interval.

This command is used for high frequency transmission of sensors.

### **Syntax**

#### Command

| SENSQR_«SensorIDs»[_«Interval»] | Query specific sensor value.       |
|---------------------------------|------------------------------------|
| SENSQR                          | Stops current SENSQR transmission. |

#### Responses

| SENSQR_A_«SensorValue»_«Unit» | Current sensor value in unit actually set under host unit.                                                         |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------|
| SENSQR_I                      | Command understood but currently not executable (device is currently executing another command).                   |
| SENSQR_L                      | Command understood but not executable (incorrect parameter, unknown sensors, interval out of allowed value range). |

#### Parameters / Return values

| Name      | Type    | Values | Meaning                                                                                                              |
|-----------|---------|--------|----------------------------------------------------------------------------------------------------------------------|
| SensorIDs | string  |        | Comma separated list of sensor IDs                                                                                   |
| Interval  | integer |        | Interval at which the sensor values are sent, in milliseconds between the values.  Optional, default value is 100ms. |

## **Examples**

| Ψ        | SENSQR_0,1,5_10                                                                        | Retrieve values from sensors 0, 1 and 5 at an interval of 10ms = 100 Hz |
|----------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|          | SENSQR                                                                                 | Stop transmission.                                                      |
| <b>↑</b> | SENSQR_B_22.00_253.3553.51<br>SENSQR_B_22.10_252.2653.51<br>SENSQR_B_22.21_251.3153.52 | The current sensor values.                                              |
|          | <br>SENSQR_A_25.81_249.8953.55                                                         | Transmission ended.                                                     |

#### **Comments**

Alternative: Transfer as byte encoded floating point values (shorter transmission and less encoding), if the above is not possible?

| S E N S Q R L B | ] |     | ] |          |          |          |          | <br>CR LF |
|-----------------|---|-----|---|----------|----------|----------|----------|-----------|
| Header          |   | Len |   | Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Newline   |

#### See also

| Ī | <b>→</b> | SENSL - Query list of sensors in the device |  |
|---|----------|---------------------------------------------|--|
| Г | <b>→</b> | SENSI - Query detailed sensor information   |  |

# 10 KCP commands – category "External Terminal" (ETL)

# ETLS - Start continuous status transmission

# **Description**

Starts sending relevant balance status information continuously with a high repetition rate.

### **Syntax**

### Command

| Ctart/stan status transmission                    |                  |                                 |
|---------------------------------------------------|------------------|---------------------------------|
| ETLS [_ «On/OTT»] Start/stop status transmission. | ETLS[_ «On/Off»] | Start/stop status transmission. |

## Responses

| ETLS_A              | Acknowledged                                           |
|---------------------|--------------------------------------------------------|
|                     | One line with the following information (repeated),    |
|                     | separated by spaces:                                   |
| ETLS                |                                                        |
| Nr                  | Sequential 16-bit number, round-robin for hash         |
|                     | code, 0 if not used                                    |
| NetInternalValue    | Internal net weighing value before rounding, but       |
|                     | after all corrections.                                 |
| NetRoundedValue     | Net weighing value rounded to correct digits. Miss-    |
|                     | ing trailing digits (multi range balances) are re-     |
|                     | placed by underscore (_). E##### in case of errors     |
|                     | in the weighing system (see Message Codes).            |
| GrossRoundedValue   | Gross weighing value rounded to correct digits.        |
|                     | Missing trailing digits (multi range balances) are     |
|                     | replaced by underscore (_). E#### in case of er-       |
|                     | rors in the weighing system (see Message Codes).       |
| TareRoundedValue    | Tare value rounded to correct digits. Missing trailing |
|                     | digits (multi range balances) are replaced by under-   |
|                     | score (_). E##### in case of errors in the weighing    |
|                     | system (see Message Codes).                            |
| Unit                | Current display unit.                                  |
| InsignificantDigits | Number of insignificant digits. Examples:              |
|                     | 0 (no insignificant digit, e=d)                        |
|                     | 1 (last digit is insignificant = grey digit)           |
|                     | 2 (last two digits are insignificant = grey digits)    |
|                     | 3 not possible                                         |
|                     | 12.2340 g                                              |
| ActiveRangeNo       | Number of active range (0 n-1)                         |
| IndicatorFlags      | Encoded as characters 0 S Z N T P C when true,         |
|                     | else missing. Meaning:                                 |
|                     | 0: Zero indicator                                      |
|                     | <ul> <li>C: Internal calibration necessary</li> </ul>  |
|                     | N: Net indicator                                       |
|                     | P: Print allowed                                       |
|                     | S: Stability indicator                                 |
|                     | Z: Zero allowed                                        |
|                     | T: Tare allowed                                        |
|                     |                                                        |
|                     | Example: "ST" means stable and tare allowed, zero      |
|                     | and print not allowed                                  |
| DetailStatusCode    | Message code for current (most important) status,      |
|                     | see Message Codes. Used for current state, like        |
|                     | initial zero error, or other errors.                   |
|                     | 0 = currently no message                               |

| Hash code for integrity of this line (0 if not used) |
|------------------------------------------------------|
|------------------------------------------------------|

#### Parameters / Return values

| Name   | Туре | Values | Meaning                            |
|--------|------|--------|------------------------------------|
| On/Off | bool | 0, 1   | Enable/disable status transmission |

#### **Comments**

This command is specifically designed for use with remote display indicators like EasyTouch tablets.

 The sending frequency depends on the balance capabilities, but should be at least 10 Hz for a fast display refresh rate.

## **Examples**

| 4        | ETLS   | Enables the ETL status transmission. |
|----------|--------|--------------------------------------|
| ¥        | ETLS_1 | Enables the ETL status transmission. |
| <b>↑</b> | ETLS_A | Transmission started.                |
|          | ETLS   | Status line                          |
|          | ETLS   | Another status line                  |
|          | ETLS   | Another status line                  |
|          |        |                                      |

# 11 KCP commands – category "Axis movement"

At the moment, these commands are used mainly for test stands with one axis, but are designed generic to allow movement of any type and number of (linear or rotational) axis.

AXISHOME Home the specified axis.

AXISLIST List all available axes

AXISMOVE Move the specified axis

AXISPOS Retrieve the actual axis position

AXISPOSRATE Set axis position reporting mode and interval

AXISRAMP Set the acceleration and deceleration of an axis

AXISSPEED Set the default speed of an axis

#### **Description**

Use AXISMOVE to move the specified axis to a position absolute or relative to the current position. The maximum movement speed can be specified optionally; otherwise the default axis speed and ramp parameters are used.

### **Syntax**

#### Command

| Ī | AXISMOVE _ «AxisName: | »_«PosSpecType» | _«Pos/Dist»[_«Speed»] | Move the specified axis. |
|---|-----------------------|-----------------|-----------------------|--------------------------|
|---|-----------------------|-----------------|-----------------------|--------------------------|

#### Responses

| AXISMOVE_B «AxisName» «CurPos» «CurSpeed» AXISMOVE_B «AxisName» «CurPos» «CurSpeed» | Axis started to move Axis is moving, current absolute position and speed is reported regularly.       |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                                                     | :::                                                                                                   |
| AXISMOVE_A                                                                          | Movement completed.                                                                                   |
| AXISMOVE_I                                                                          | Command understood but currently not executable (e.g. device not homed, device is currently executing |
|                                                                                     | another command)                                                                                      |

#### Parameters / Return values

| Name        | Туре   | Values                                     | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|--------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AxisName    | string |                                            | Name of the axis (Example "X", "Y", "Z", or other, as given by                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |        |                                            | the AXISLIST command)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PosSpecType | enum   | BY                                         | Moving relative from the current position. Negative values mean the axis should move in the opposite direction.                                                                                                                                                                                                                                                                                                                                                            |
|             |        | ТО                                         | Moving to an absolute position (only after homing the system).                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pos/Dist    | float  |                                            | In BY mode the value is the distance to move from the current position. Can be interrupted when the axis triggers a limit switch.  Example: +100 means move 100 units up/right, -100 means move 100 units down/left from the current position.  In TO mode, this parameter specifies the absolute target position. The relative movement distance is known to the system, because the system was homed at a specified zero. Example: TO 100 means to move to position 100. |
| Speed       | float  |                                            | Axis maximum travel speed.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CurPos      | float  |                                            | The current absolute position of the axis (0 if not available).                                                                                                                                                                                                                                                                                                                                                                                                            |
| CurSpeed    | float  | The speed the axis is currently moving at. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### **Comments**

- Speed default depends on the device (standard: 20 mm/min).
- Default distance units are "mm" for a linear axis and degrees for a rotational axis.
- Default speed units are "mm/min" for a linear axis and degrees/s for a rotational axis.
- The given speed is the maximum speed reached after completing ramp-up and ramp-down (if applicable). See the AXISRAMP command for details.
- The interval of reporting the current position and speed depends on the device hardware capability; see the AXISPOSRATE command on how to configure rate and reporting mode.

# **Examples**

| T        | AXISMOVE_X_BY_100   | Move X axis by 100 units from current position       |
|----------|---------------------|------------------------------------------------------|
| _        |                     | ·                                                    |
| <b>↑</b> | AXISMOVE_B_X        | Command understood, axis X started moving            |
| <b>↑</b> | AXISMOVE_B_X_115_5  | Axis X is currently at absolute position 115, moving |
|          |                     | with speed 5.                                        |
| <b>↑</b> | AXISMOVE_B_X_120_10 | Axis X is currently at absolute position 120, moving |
|          |                     | with speed 10.                                       |
| <b>↑</b> | AXISMOVE_B_X_125_20 |                                                      |
| <b>↑</b> | AXISMOVE_B_X_130_20 |                                                      |
| 1        |                     |                                                      |
| <b>1</b> | AXISMOVE_A_X        | Movement of axis X completed successfully            |

# **Description**

List all available and configured axes of the device.

### **Syntax**

### Command

| AXISITST | List the available axes. |
|----------|--------------------------|
| AXISLISI | LIST THE AVAILABLE AXES. |

### Responses

| AXISLIST_B_«Name»_«Type»_«Desc»_«CurPos»_«Unit» AXISLIST_B_«Name»_«Type»_«Desc»_«CurPos»_«Unit» | First axis.<br>Second axis.                      |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------|
| AXISLIST_A_«Name»_«Type»_«Desc»_«CurPos»_«Unit»                                                 | Last axis.                                       |
| AXISLIST_I                                                                                      | Command understood but currently not executable. |

### Parameters / Return values

| Name        | Type   | Values | Meaning                                                |
|-------------|--------|--------|--------------------------------------------------------|
| Name        | string | X, Y,  | Internal name / ID of the axis                         |
| Type        | enum   | LIN    | Linear axis                                            |
|             |        | ROT    | Rotational axis                                        |
| Description | string |        | Internal description of the sensor, e.g. MainAxis      |
| CurPos      | float  |        | Current absolute position of the axis (0 if not homed) |
| Unit        | string |        | Unit of axis position (usually mm or degrees)          |

### Comments

Most current devices only have one axis.

# **Examples**

| ¥        | AXISLIST                         | List all axis                               |
|----------|----------------------------------|---------------------------------------------|
| <b>↑</b> | AXISLIST_B_X_LIN_SpindleZ_51_mm  | First axis: Linear, ID X, descr. "SpindleZ" |
|          | AXISLIST_A_Y_LIN_TableX_151.3_mm | Second axis: Linear, ID Y, descr. "TableX"  |

# AXISHOME - Retrieve current axis position

### **Description**

AXISHOME brings the specified axis to its default home position (usually by slowly moving to a reference switch or scale). Most axes require homing to calculate absolute positions, e.g. after power loss or reset of the device.

### **Syntax**

#### Command

| AXISHOME_«AxisName»[_«Speed»] | Homes the specified axis. |
|-------------------------------|---------------------------|
|-------------------------------|---------------------------|

# Responses

| AXISHOME_B_«AxisName» AXISHOME_A_«AxisName» | Homing started, axis begins to move (if not already at home position).  Homing successfully completed. |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------|
| AXISHOME_I                                  | Command understood but currently not executable.                                                       |
| AXISHOME_L                                  | Command understood but not executable (unknown axis or impossible speed value).                        |

#### Parameters / Return values

| Name     | Type   | Values | Meaning                                            |
|----------|--------|--------|----------------------------------------------------|
| AxisName | string |        | Name of the axis (Example "X", "Y", "Z", or other, |
|          |        |        | as given by the AXISLIST command)                  |
| Speed    | float  |        | Optional homing speed value (overrides default).   |

# **Examples**

| 1 | AXISHOME_X   | Home axis X.                     |
|---|--------------|----------------------------------|
| 1 | AXISHOME_B_X | Understood, axis X starts moving |
|   | AXISHOME_A_X |                                  |

| ¥        | AXISHOMEŢY   | Home axis Y.                     |
|----------|--------------|----------------------------------|
| <b>1</b> | AXISHOME_A_Y | Axis Y at home position already. |

# AXISPOS - Retrieve current axis position

# **Description**

AXISPOS queries the current position of the specified axis.

### **Syntax**

### Command

| AXISPOS_ <i>«AxisName»</i> | Query position of axis. |
|----------------------------|-------------------------|
|----------------------------|-------------------------|

### Responses

| AXISPOS_A_«AxisName»_«CurPos» | Current position of axis.                        |
|-------------------------------|--------------------------------------------------|
| AXISPOS_I                     | Command understood but currently not executable. |
| AXISPOS_L                     | Command understood but not executable (unknown   |
|                               | axis or axis not homed).                         |

### Parameters / Return values

| Name     | Туре   | Values | Meaning                                            |
|----------|--------|--------|----------------------------------------------------|
| AxisName | string |        | Name of the axis (Example "X", "Y", "Z", or other, |
|          |        |        | as given by the AXISLIST command)                  |
| CurPos   | float  |        | Current absolute position of the axis.             |

# **Examples**

| 4 | AXISPOS_X         | Query position of axis X. |
|---|-------------------|---------------------------|
| 1 | AXISPOS_A_X_13.22 | Axis X is at 13.22.       |

# AXISSPEED - Configure the default speed of an axis

# **Description**

This command configures the default speed of the specified axis (if no specific speed given in the move command).

### Command

| AXISRAMP_«AxisName»                          | Query parameters.          |
|----------------------------------------------|----------------------------|
| AXISRAMP_ <i>«AxisName»</i> _ <i>«Speed»</i> | Set the default axis speed |

#### Responses

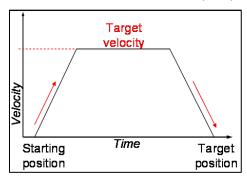
| AXISRAMP_A_«AxisName»_«Speed» | Returns the current parameter for the axis                                                  |
|-------------------------------|---------------------------------------------------------------------------------------------|
| AXISRAMPJA                    | New default speed for the axis set                                                          |
| AXISRAMP_I                    | Command understood but currently not executable (device is actually in menu or input mode). |
| AXISRAMP_L                    | Command understood but not executable (incor-                                               |
|                               | rect or no parameter).                                                                      |

#### Parameters / Return values

| Name     | Type   | Values | Meaning                                            |
|----------|--------|--------|----------------------------------------------------|
| AxisName | string |        | Name of the axis (Example "X", "Y", "Z", or other, |
|          |        |        | as given by the AXISLIST command)                  |
| Speed    | float  |        | Axis default speed                                 |

### Comments

• Speed value limits depend on the axis and motor capacity.


# **Examples**

| •        | AXISSPEED_X_2 | Set the default speed for axis X to 2 mm/s per second. |
|----------|---------------|--------------------------------------------------------|
| <b>1</b> | AXISSPEED_A   | Command executed successfully                          |

| ¥        | AXISSPEED_X     | Query parameters.          |
|----------|-----------------|----------------------------|
| <b>↑</b> | AXISSPEED_A_X_2 | Axis X default speed is 2. |

### **Description**

This command configures the acceleration and deceleration ramp slopes of the specified axis.



#### Command

| AXISRAMP_«AxisName»                                          | Query parameters.                                |
|--------------------------------------------------------------|--------------------------------------------------|
| AXISRAMP_ <i>«AxisName»</i> _ <i>«Acc»</i> [ <i>_«Dec»</i> ] | Set the acceleration and deceleration values for |
|                                                              | the movement of the axis                         |

#### Responses

| AXISRAMP_A_«AxisName»_«Acc»_«Dec» | Show the current parameter for the ramp                                                     |
|-----------------------------------|---------------------------------------------------------------------------------------------|
| AXISRAMP_A                        | New ramp parameters for the axis configured                                                 |
| AXISRAMP_I                        | Command understood but currently not executable (device is actually in menu or input mode). |
| AXISRAMP_L                        | Command understood but not executable (incorrect or no parameter).                          |

#### Parameters / Return values

| Name     | Туре   | Values | Meaning                                                |
|----------|--------|--------|--------------------------------------------------------|
| AxisName | string |        | Name of the axis (Example "X", "Y", "Z", or other,     |
|          |        |        | as given by the AXISLIST command)                      |
| Acc      | float  |        | Value for the acceleration ramp in mm/s <sup>2</sup>   |
| Dec      | float  |        | Value for the deceleration ramp in mm/s <sup>2</sup> . |
|          |        |        | If not specified, the value of $Acc$ will be used.     |

#### **Comments**

- · Standard ramps depend on the axis and motor capacity.
- Ramp is implemented for smoother start and stop of the axis, in particular on heavy loads.

### **Examples**

| Ψ | AXISRAMP_X_2 | Set the acceleration and deceleration rate for axis X to 2 mm/s per second. |
|---|--------------|-----------------------------------------------------------------------------|
| 1 | AXISRAMP_A   | Command executed successfully                                               |

| T        | AXISRAMP_X     | Query parameters.                           |
|----------|----------------|---------------------------------------------|
| <b>↑</b> | AXISRAMP_A_X_2 | Axis X ramp parameter is 2 mm/s per second. |

# AXISPOSRATE - Set axis position reporting mode and interval

### **Description**

During AXISMOVE commands, the device continuously sends the current position and speed. The AXISPOSRATE command configures the interval, at which these updates are sent.

#### **Syntax**

#### Command

| AXISPOSRATE_«AxisName»            | Query current parameters. |
|-----------------------------------|---------------------------|
| AXISPOSRATE_«AxisName»_«Interval» | Set new parameters.       |

#### Responses

| AXISPOSRATE_A_«AxisName»_«Interval» | Current interval of axis.                                                                   |
|-------------------------------------|---------------------------------------------------------------------------------------------|
| AXISPOSRATE_A                       | New parameters stored successfully.                                                         |
| AXISPOSRATE_I                       | Command understood but currently not executable (device is actually in menu or input mode). |
| AXISPOSRATE_L                       | Command understood but not executable (incorrect or no parameter).                          |

#### Parameters / Return values

| Name     | Туре   | Values    | Meaning                                            |
|----------|--------|-----------|----------------------------------------------------|
| AxisName | string |           | Name of the axis (Example "X", "Y", "Z", or other, |
|          |        |           | as given by the AXISLIST command)                  |
| Interval | float  | 0.0 - 100 | Sample rate in values per second (Hz).             |
|          |        |           | If value is 0, no updates are sent.                |

#### **Comments**

- To disable the regular transmission of values during axis movement, set Interval to 0.
- Typical, device dependent default value is 5 Hz.

# **Examples**

| •        | AXISPOSRATE_X_2 | Set the sample rate for the position of the axis to 2 Hz (samples per second) |
|----------|-----------------|-------------------------------------------------------------------------------|
| <b>1</b> | AXISPOSRATE_A   | Command executed successfully                                                 |

| ¥        | AXISPOSRATE_X     | Query parameters.                               |
|----------|-------------------|-------------------------------------------------|
| <b>↑</b> | AXISPOSRATE_A_X_2 | Axis X sample rate is 2 Hz (samples per second) |

| ¥        | AXISPOSRATE_X_0   | Disable auto-send of position. |
|----------|-------------------|--------------------------------|
| <b>1</b> | AXISPOSRATE A X 0 | Command executed successfully  |

# 12 KCP commands – category "Digital Platform"

# SJ/SJR - Send current indication with status

# **Description**

Send current indication with additional information about the current status.

### **Syntax**

#### Command

| SJ              | Send the current indication with status.                                                                      |
|-----------------|---------------------------------------------------------------------------------------------------------------|
| SJR[_«PauseMs»] | Send the current indication with status continuously. Optional pause between two SJ responses in milliseconds |

#### Responses

| SJR_«BM»_«WeightValue»_«Unit» | Current stable weight value in unit actually set under host unit with current status [2.5.1]                                                           |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| SJR_I                         | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| SJR_L                         | Command understood but not executable (incorrect parameter).                                                                                           |

### Parameters / Return values

| Name        | Туре    | Values | Meaning                                                  |
|-------------|---------|--------|----------------------------------------------------------|
| PauseMs     | integer |        | Pause between two SJ responses in continuous mode (SJR). |
| BM          | char    |        | Status coded in bit:  2^0 = stable                       |
|             |         |        | 2^1 = zero range                                         |
|             |         |        | 2^2 = tare<br>2^5 = reserved                             |
|             |         |        | 2^6 = always 1                                           |
| WeightValue | float   |        | Weight value                                             |
| Unit        | string  |        | Currently displayed unit                                 |

# **Examples**

| 4        | SJ             | Send the current indication with status.           |
|----------|----------------|----------------------------------------------------|
| <b>↑</b> | SJR_A_100.00_g | The current weight value is 100.00 g and status is |
|          |                | zero range.                                        |

|   | 4 | SJ             | Send the current indication with status.                   |
|---|---|----------------|------------------------------------------------------------|
| • | 1 | SJR_@_100.00_g | The current weight value is 100.00 g and status is stable. |

# 13 KCP commands - category "Network"

# JNEA - Query / set network address (IP) of Ethernet Interface

#### **Description**

Use this command to query or set the network address (IP) of Ethernet Interface.

#### **Syntax**

#### Command

| JNEA                   | Query the current network address. |
|------------------------|------------------------------------|
| JNEA_ «NetworkAddress» | Set the current network address.   |
| JNEA_0.0.0.0           | Activate DHCP.                     |

#### Responses

| JNEA_A_«NetworkAddress» | Current network address (IP).                                                                                                                          |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| JNEA_A                  | Network address setting successfully performed.                                                                                                        |
| JNEA_I                  | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| JNEA_L                  | Command understood but not executable (incorrect parameter).                                                                                           |

#### Parameters / Return values

| Name           | Type   | Values | Meaning                             |
|----------------|--------|--------|-------------------------------------|
| NetworkAddress | string |        | Network address (e.g. 192.168.0.1). |

#### **Comments**

- All three commands, JNEA, JNEK and JNEG are required to enter sequentially for completing the setting of Ethernet Interface.
- The exceptional case is activating the DHCP. The network mask and gateway address are not required. A single command "JNEA 0.0.0.0" can activate the DHCP of the Ethernet Interface.
- It may take a few seconds to response to the command.

#### **Examples**

| Ψ        | JNEA               | Send current network address.                       |
|----------|--------------------|-----------------------------------------------------|
| <b>1</b> | JNEA_A_192.168.0.1 | The current network address is 192.168.0.1.         |
| ¥        | JNEA_192.168.0.1   | Set network address to 192.168.0.1.                 |
| 1        | JNEA_A             | Set network address setting successfully performed. |
|          |                    |                                                     |
| Ψ        | JNEA_0.0.0.0       | Activate DHCP setting.                              |
| <b>1</b> | JNEA_A             | Successfully activated DHCP setting.                |

#### See also

| <b>→</b> | JNEK - Query / set network mask    |
|----------|------------------------------------|
| <b>→</b> | JNEG - Query / set gateway address |

# JNEK - Query / set network mask of Ethernet Interface

#### **Description**

Use this command to query or set the network mask of Ethernet Interface.

#### **Syntax**

#### Command

| JNEK               | Query the current network mask. |
|--------------------|---------------------------------|
| JNEK_«NetworkMask» | Set the current network mask.   |

#### Responses

| JNEK_A_ <i>«NetworkMask»</i> | Current network mask.                                                                                                                                  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| JNEK_A                       | Network mask setting successfully performed.                                                                                                           |
| JNEK_I                       | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| JNEK_L                       | Command understood but not executable (incorrect parameter).                                                                                           |

# Parameters / Return values

| Name        | Type   | Values | Meaning                           |
|-------------|--------|--------|-----------------------------------|
| NetworkMask | string |        | Network mask (e.g. 255.255.255.0) |

# **Comments**

- All three commands, JNEA, JNEK and JNEG are required to enter sequentially for completing the setting of Ethernet Interface.
- The exceptional case is activating the DHCP. The network mask and gateway address are not required. A single command "JNEA 0.0.0.0" can activate the DHCP of the Ethernet Interface.
- It may take a few seconds to response to the command.

#### **Examples**

| Ψ        | JNEK                | Send current network mask.                       |
|----------|---------------------|--------------------------------------------------|
| <b>1</b> | JNEK_A_255.255.25.0 | The current network mask is 255.255.255.0.       |
|          |                     |                                                  |
| ¥        | JNEK_255.255.25.0   | Set network mask to 255.255.25.0.                |
| <b>↑</b> | JNEK_A              | Set network mask setting successfully performed. |

#### See also

| <b>→</b> | JNEA - Query / set network address (IP) |
|----------|-----------------------------------------|
| <b>→</b> | JNEG - Query / set gateway address      |

### JNEG - Query / set gateway address of Ethernet Interface

#### **Description**

Use this command to query or set the gateway address of Ethernet Interface.

#### **Syntax**

#### Command

| JNEG                          | Query the current gateway address. |
|-------------------------------|------------------------------------|
| JNEG_ <i>«GatewayAddress»</i> | Set the current gateway address.   |

#### Responses

| JNEG_A_ <i>«GatewayAddress»</i> | Current gateway address.                                                                                                                               |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| JNEG_A                          | Gateway address setting successfully performed.                                                                                                        |
| JNEG_I                          | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| JNEG_L                          | Command understood but not executable (incorrect parameter).                                                                                           |

#### Parameters / Return values

| Name           | Type   | Values | Meaning                             |
|----------------|--------|--------|-------------------------------------|
| GatewayAddress | string |        | Gateway address (e.g. 192.168.0.99) |

#### **Comments**

- All three commands, JNEA, JNEK and JNEG are required to enter sequentially for completing the setting of Ethernet Interface.
- The exceptional case is activating the DHCP. The network mask and gateway address are not required. A single command "JNEA 0.0.0.0" can activate the DHCP of the Ethernet Interface.
- It may take a few seconds to response to the command.

#### **Examples**

| Ψ | JNEG                | Send current gateway address.                |
|---|---------------------|----------------------------------------------|
| 1 | JNEG_A_192.168.0.99 | The current gateway address is 192.168.0.99. |
|   |                     |                                              |
| 4 | JNEG 192.168.0.99   | Set gateway address to 192.168.0.99.         |
|   | 0110010100          | Det gateway address to 192.100.0.99.         |

#### See also

| <b>→</b> | JNEA - Query / set network address (IP) |
|----------|-----------------------------------------|
| <b>→</b> | JNEK - Query / set network mask         |

# JNWA - Query / set network address (IP) of WIFI Interface

#### **Description**

Use this command to query or set the network address (IP) of WIFI Interface.

#### **Syntax**

#### Command

| JNWA                          | Query the current network address. |
|-------------------------------|------------------------------------|
| JNWA_ <i>«NetworkAddress»</i> | Set the current network address.   |
| JNWA_0.0.0.0                  | Activate DHCP.                     |

#### Responses

| JNWA_A_«NetworkAddress» | Current network address (IP).                          |
|-------------------------|--------------------------------------------------------|
| JNWA_A                  | Network address setting successfully performed.        |
| JNWA_I                  | Command understood but currently not executable        |
|                         | (device is currently executing another command,        |
|                         | e.g. taring, or timeout as stability was not reached). |
| JNWA_L                  | Command understood but not executable (incorrect       |
|                         | parameter).                                            |

#### Parameters / Return values

| Name           | Type   | Values | Meaning                             |
|----------------|--------|--------|-------------------------------------|
| NetworkAddress | string |        | Network address (e.g. 192.168.0.1). |

#### **Comments**

- All three commands, JNWA, JNWK and JNWG are required to enter sequentially for completing the setting of WIFI Interface.
- The exceptional case is activating the DHCP. The network mask and gateway address are not required. A single command "JNWA 0.0.0.0" can activate the DHCP of the WIFI Interface.
- It may take a few seconds to response to the command.

## **Examples**

| Ψ        | JNWA               | Send current network address.                       |
|----------|--------------------|-----------------------------------------------------|
| <b>↑</b> | JNWA_A_192.168.0.1 | The current network address is 192.168.0.1.         |
| _        |                    |                                                     |
| Ψ        | JNWA_192.168.0.1   | Set network address to 192.168.0.1.                 |
| <b>↑</b> | JNWA_A             | Set network address setting successfully performed. |
|          |                    |                                                     |
| T        | JNWA_0.0.0.0       | Activate DHCP setting.                              |
| <b>↑</b> | JNWA_A             | Successfully activated DHCP setting.                |

#### See also

| <b>→</b> | JNWK - Query / set network mask    |
|----------|------------------------------------|
| <b>→</b> | JNWG - Query / set gateway address |

### JNWK - Query / set network mask of WIFI Interface

#### **Description**

Use this command to query or set the network mask of WIFI Interface.

#### **Syntax**

#### Command

| JNWK               | Query the current network mask. |
|--------------------|---------------------------------|
| JNWK_«NetworkMask» | Set the current network mask.   |

#### Responses

| JNWK_A_«NetworkMask» | Current network mask.                                                                                                                                  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| JNWK_A               | Network mask setting successfully performed.                                                                                                           |
| JNWK_I               | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| JNWK_L               | Command understood but not executable (incorrect parameter).                                                                                           |

#### Parameters / Return values

| Name        | Type   | Values | Meaning                           |
|-------------|--------|--------|-----------------------------------|
| NetworkMask | string |        | Network mask (e.g. 255.255.255.0) |

### **Comments**

- All three commands, JNWA, JNWK and JNWG are required to enter sequentially for completing the setting of WIFI Interface.
- The exceptional case is activating the DHCP. The network mask and gateway address are not required. A single command "JNWA 0.0.0.0" can activate the DHCP of the WIFI Interface.
- It may take a few seconds to response to the command.

### **Examples**

| ¥        | JNWK                | Send current network mask.                       |
|----------|---------------------|--------------------------------------------------|
| <b>↑</b> | JNWK_A_255.255.25.0 | The current network mask is 255.255.255.0.       |
|          |                     |                                                  |
| 1        | JNWK_255.255.25.0   | Set network mask to 255.255.25.0.                |
| <b>↑</b> | JNWK_A              | Set network mask setting successfully performed. |

#### See also

| <b>→</b> | JNWA - Query / set network address (IP) |
|----------|-----------------------------------------|
| <b>→</b> | JNWG - Query / set gateway address      |

# JNWG - Query / set gateway address of WIFI Interface

#### **Description**

Use this command to query or set the gateway address of WIFI Interface.

#### **Syntax**

#### Command

| JNWG                          | Query the current gateway address. |
|-------------------------------|------------------------------------|
| JNWG_ <i>«GatewayAddress»</i> | Set the current gateway address.   |

#### Responses

| JNWG_A_ <i>«GatewayAddress»</i> | Current gateway address.                                                                                                                               |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| JNWG_A                          | Gateway address setting successfully performed.                                                                                                        |
| JNWG_I                          | Command understood but currently not executable (device is currently executing another command, e.g. taring, or timeout as stability was not reached). |
| JNWG_L                          | Command understood but not executable (incorrect parameter).                                                                                           |

#### Parameters / Return values

| Name           | Type   | Values | Meaning                             |
|----------------|--------|--------|-------------------------------------|
| GatewayAddress | string |        | Gateway address (e.g. 192.168.0.99) |

#### **Comments**

- All three commands, JNWA, JNWK and JNWG are required to enter sequentially for completing the setting of WIFI Interface.
- The exceptional case is activating the DHCP. The network mask and gateway address are not required. A single command "JNWA 0.0.0.0" can activate the DHCP of the WIFI Interface.
- It may take a few seconds to response to the command.

### **Examples**

| ¥        | JNWG                | Send current gateway address.                 |
|----------|---------------------|-----------------------------------------------|
| <b>1</b> | JNWG_A_192.168.0.99 | The current gateway address is 192.168.0.99.  |
|          |                     |                                               |
| ¥        | JNWG_192.168.0.99   | Set gateway address to 192.168.0.99.          |
| <b>^</b> | JNWG A              | Set gateway address setting successfully per- |

formed.

#### See also

| <b>→</b> | JNWA - Query / set network address (IP) |
|----------|-----------------------------------------|
| <b>→</b> | JNWK - Query / set network mask         |

# 14 KCP commands – Level 2 (model-specific features)

The commands from Level 2 are available for certain instruments.

**Attention:** In future versions of KCP, these commands are split into more categories.

PCTW Percent weighing: Query/set 100% weight

PW Piece counting: Query/set piece weight

SIM Set mode of indication (Peak or track mode)

SMEM Read measurement memory / reports

# PCTW - Percent weighing: Query/set 100% weight

# **Description**

Use this command to set or query the reference value for percent weighing.

### **Syntax**

### Command

| PCTW                                       | Queries the weight corresponding to 100%. |
|--------------------------------------------|-------------------------------------------|
| PCTW_ <i>«WeightValue»</i> _ <i>«Unit»</i> | Sets the weight corresponding to 100%.    |

### Responses

| PCTW_A_«WeightValue»_«Unit» | Current 100% reference weight with unit.         |
|-----------------------------|--------------------------------------------------|
| PCTW_A                      | 100% reference weight is set.                    |
| PCTW_I                      | Command understood but currently not executable. |
| PCTW_L                      | Command understood but not executable (incorrect |
|                             | weight).                                         |

#### Parameters / Return values

| Name        | Type   | Values | Meaning                                 |
|-------------|--------|--------|-----------------------------------------|
| WeightValue | float  |        | 100% reference weight – numerical value |
| Unit        | string |        | 100% reference weight – unit string     |

### **Comments**

The balance automatically chances to the percent weighing mode.

# **Examples**

| ¥        | PCTW            |                                                |
|----------|-----------------|------------------------------------------------|
| <b>1</b> | PCTW_A_100.00_g | The current 100% weight value is 100.00 g.     |
|          |                 |                                                |
| 1        | PCTW_100.00_g   | Set the current 100% weight value to 100.00 g. |
| <b>↑</b> | PCTW_A          | OK                                             |

# PW - Piece counting: Query / set piece weight

# **Description**

Use this command to set or query the piece weight value for piece counting.

### **Syntax**

### Command

| PW                      | Queries the current piece weight. |
|-------------------------|-----------------------------------|
| PW_«WeightValue»_«Unit» | Sets the current piece weight.    |

### Responses

| PW_A_«WeightValue»_«Unit» | Returns the current piece weight.                |
|---------------------------|--------------------------------------------------|
| PW_A                      | Current piece weight is set.                     |
| PW_I                      | Command understood but currently not executable. |
| PW_L                      | Command understood but not executable (incorrect |
|                           | weight).                                         |

#### Parameters / Return values

| Name        | Type   | Values | Meaning                        |
|-------------|--------|--------|--------------------------------|
| WeightValue | float  |        | Piece weight – numerical value |
| Unit        | string |        | Piece weight – unit string     |

## **Comments**

The balance automatically chances to the piece counting mode.

# **Examples**

↑ PW\_A

| ¥        | PW            |                                           |
|----------|---------------|-------------------------------------------|
| <b>↑</b> | PW_A_1.2345_g | The current piece weight is 100.00 g.     |
|          |               |                                           |
| ¥        | PW_1.2345_g   | Set the current piece weight to 100.00 g. |

OK

# SIM - Set mode of indication (peak or track mode)

# **Description**

Queries or sets the current mode of indication and resets the current peak value.

### **Syntax**

### Command

| SIM                | Query current mode of indication.                    |  |  |  |
|--------------------|------------------------------------------------------|--|--|--|
| SIM_ <i>«Mode»</i> | Set current mode of indication and reset the current |  |  |  |
|                    | peak value.                                          |  |  |  |

### Responses

| SIM_«Mode» | Current mode of indication.                        |
|------------|----------------------------------------------------|
| SIM_A      | Mode successfully set, current peak value is zero. |
| SIM_I      | Invalid mode.                                      |

#### Parameters / Return values

| Name | Туре   | Values | Meaning                              |
|------|--------|--------|--------------------------------------|
| Mode | string | T      | Track mode:                          |
|      |        |        | indicate the current measurand       |
|      |        | Р      | Peak mode:                           |
|      |        |        | only indicate the largest value +/-  |
|      |        | P+     | Peak positive mode:                  |
|      |        |        | only indicate the largest pos. value |
|      |        | P-     | Peak negative mode:                  |
|      |        |        | only indicate the largest neg. value |

# **Examples**

↑ SIM\_A

| <b>T</b> | SIM    | Query current mode of indication.                 |
|----------|--------|---------------------------------------------------|
| <b>↑</b> | SIM_T  | Current mode of indication is track mode.         |
| <b>↑</b> | SIM_P+ | Current mode of indication is peak positive mode. |
|          |        |                                                   |
| <b>T</b> | SIM_P+ | Set current mode of indication to peak positive.  |

| 4 | SIM_XYZ | Invalid mode. |
|---|---------|---------------|
| → | SIM_I   | Error.        |

OK, peak value reset.

# SMEM - Read measurement memory / reports

# **Description**

Sends all available recorded data in a unspecified tabular form (separated by spaces).

# **Syntax**

### Command

| SMEM Request recorded data. |
|-----------------------------|
|-----------------------------|

### Responses

| SMEM_A_START               | For better human readability, the data values in the |
|----------------------------|------------------------------------------------------|
| <header line=""></header>  | columns are right or left-aligned, depending on the  |
| <data 1="" line=""></data> | field type.                                          |
| <data 2="" line=""></data> | Values/data strings with spaces shall be quot-       |
| <data 3="" line=""></data> | ed/escaped as defined.                               |
| SMEM_A_END                 | · '                                                  |

# **Examples**

| Ψ        | SMEM         |            |          |      |            |    |
|----------|--------------|------------|----------|------|------------|----|
| <b>1</b> | SMEM A START |            |          |      |            |    |
|          | Number       | Date       | Time     | Mode | Indication | า  |
|          | 1            | 2016-01-13 | 12:34:56 | T    | 12.3456 N  | V  |
|          | 2            | 2016-02-22 | 12:37:15 | P+   | 12.3456 k  | ςN |
|          | 3            | 2016-03-31 | 12:39:41 | P-   | -1234.56 N | 1  |
|          | SMEM A       | END        |          |      |            |    |

# 15 KCP commands – category "Service"

Not publically documented.

# 16 KCP command index

This page lists all the page numbers, relevant information to a command can be found.

|             |    |      |          | JALL<br>JALZ | 57<br>56 | SIM<br>SIR        | 5, 100<br>30 |
|-------------|----|------|----------|--------------|----------|-------------------|--------------|
| @           |    | E    |          | JDA          | 67       | SJ                | 90           |
| w           |    | L    |          | JDC          | 64       | SJR               | 90           |
| _           |    |      |          | JDD          | 65       | SMEM              | 5, 101       |
| @           | 10 | ETLS | 79       | JDF          | 68       | SR                | 3, 101<br>44 |
|             |    |      |          | JDL          | 59       | SX                | 31           |
| _           |    |      |          | JDO          | 66       | SXI               | 32           |
| Α           |    | G    |          | JDP          | 60       | SXIR              | 33           |
|             |    |      |          | JDV          | 61       | 3/11/             | 33           |
| AXISHOME    | 85 | GA   | 51       | JNEA         | 91       |                   |              |
| AXISLIST    | 84 | GU   | 52       | JNEG         | 93       | $\overline{\tau}$ |              |
| AXISMOVE    | 82 |      |          | JNEK         | 92       | •                 |              |
| AXISPOS     | 86 |      |          | JNWA         | 94       | <del>-</del>      | 2.4          |
| AXISPOSRATE | 89 | 1    |          | JNWG         | 96       | T                 | 34           |
| AXISRAMP    | 88 |      |          | JNWK         | 95       | TA                | 46           |
| AXISSPEED   | 87 | 10   | 11       | JS           | 58       | TAC               | 48           |
|             |    | l1   | 12       | JTRA         | 73       | TAI               | 47           |
|             |    | 12   | 14       | <b></b>      |          | TI                | 35           |
| C           |    | 13   | 15       |              |          | TZ                | 36           |
|             |    | 14   | 16       | K            |          |                   |              |
| C3          | 50 | 15   | 17       | ^`           |          | 11                |              |
|             |    | 154  | 53       | IZ           | 24       | U                 |              |
|             |    | IBIS | 16       | K            | 24       |                   |              |
| D           |    | IBMT | 14       | KCPC         | 13       | U                 | 5, 37        |
|             |    | IBRL | 41       | KCPV         | 12       |                   |              |
| D           | 20 | IBRT | 42       |              |          |                   |              |
| DM          | 21 |      |          | S            |          | Z                 |              |
| DW          | 22 |      |          | 3            |          |                   |              |
| DVV         | 22 | J    |          |              |          | Z                 | 5, 38        |
|             |    | -    |          | S            | 5, 28    | ZI                | 39           |
|             |    | JAGL | 55       | SAD          | 69       | ZINI              | 71           |
|             |    | JAGZ | 55<br>54 | SADR         | 70       | ZMAN              | 72           |
|             |    | JAGZ | 54       | SI           | 5, 29    |                   |              |